Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

CO2 regeneration performance enhancement by nanoabsorbents for energy conversion application

Authors
Lee, Jung HunLee, Jae WonKang, Yong Tae
Issue Date
25-6월-2016
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Al2O3 nanoparticles; CO2 regeneration; Enhancement mechanism; Nanoabsorbents; Visualization
Citation
APPLIED THERMAL ENGINEERING, v.103, pp.980 - 988
Indexed
SCIE
SCOPUS
Journal Title
APPLIED THERMAL ENGINEERING
Volume
103
Start Page
980
End Page
988
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/88302
DOI
10.1016/j.applthermaleng.2016.04.160
ISSN
1359-4311
Abstract
Due to the recent increase in the consumption of energy and the use of fossil fuels, global warming has become a serious issue. To address this problem, CO2 gas, which is the major element of the greenhouse gases, should be captured, regenerated and converted to useful fuels. The Integrated Gasification Combined Cycle (IGCC) and cement process generate large amount of CO2, which are controlled through pre-combustion capture. However, this method has a disadvantage because the system temperature should be decreased to -20 degrees C or lower. Therefore, the development of new absorbent is required to reduce the energy consumed for refrigeration. There is a study that improved the CO2 absorption performance by adding Al2O3 nanoparticles to methanol. However, studies on the regeneration of CO2 in nano fluid absorbents (nanoabsorbents) are insufficient. Therefore, in this study, the CO2 regeneration performance in Al2O3 nanoabsorbents is evaluated. It is found that the regeneration performance of CO2 is improved by 16% by using nanoabsorbents compared to methanol. Furthermore, the CO2 regeneration chatacteristics of nanoabsorbents are analyzed by considering the detachment time of CO2 bubbles from the surface, the cross-sectional area of CO2 bubble, and the number of regeneration sites through the CO2 regeneration and bubble visualization experiments. It is concluded that the mechanism of surface effect is the most plausible to explain the CO2 regeneration performance enhancement by nanoabsorbents. (C) 2016 Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Yong Tae photo

Kang, Yong Tae
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE