Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Scaffold-free parathyroid tissue engineering using tonsil-derived mesenchymal stem cells

Authors
Park, Yoon ShinHwang, Ji-YoungJun, YeslJin, Yoon MiKim, GyungahKim, Ha YeongKim, Han SuLee, Sang-HoonJo, Inho
Issue Date
15-4월-2016
Publisher
ELSEVIER SCI LTD
Keywords
Tonsil-derived mesenchymal stem cells; Spheroid; Parathyroid hormone; Hypoparathyroidism; N-cadherin
Citation
ACTA BIOMATERIALIA, v.35, pp.215 - 227
Indexed
SCIE
SCOPUS
Journal Title
ACTA BIOMATERIALIA
Volume
35
Start Page
215
End Page
227
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/88922
DOI
10.1016/j.actbio.2016.03.003
ISSN
1742-7061
Abstract
To restore damaged parathyroid function, parathyroid tissue engineering is the best option. Previously, we reported that differentiated tonsil-derived mesenchymal stem cells (dTMSC) restore in vivo parathyroid function, but only if they are embedded in a scaffold. Because of the limited biocompatibility of Matrigel, however, here we developed a more clinically applicable, scaffold-free parathyroid regeneration system. Scaffold-free dTMSC spheroids were engineered in concave microwell plates made of polydimethylsiloxane in control culture medium for the first 7 days and differentiation medium (containing activin A and sonic hedgehog) for next 7 days. The size of dTMSC spheroids showed a gradual and significant decrease up to day 5, whereafter it decreased much less. Cells in dTMSC spheroids were highly viable (>80%). They expressed high levels of intact parathyroid hormone (iPTH), the parathyroid secretory protein 1, and cell adhesion molecule, N-cadherin. Furthermore, dTMSC spheroids-implanted parathyroidectomized (PTX) rats revealed higher survival rates (50%) over a 3-month period with physiological levels of both serum iPTH (57.7-128.2 pg/mL) and ionized calcium (0.70-1.15 mmol/L), compared with PTX rats treated with either vehicle or undifferentiated TMSC spheroids. This is the first report of a scaffold-free, human stem cell-based parathyroid tissue engineering and represents a more clinically feasible strategy for hypoparathyroidism treatment than those requiring scaffolds. Statement of Significance Herein, we have for the first time developed a scaffold-free parathyroid tissue spheroids using differentiated tonsil-derived mesenchymal stem cells (dTMSC) to restore in vivo parathyroid cell functions. This new strategy is effective, even for long periods (3 months), and is thus likely to be more feasible in clinic for hypoparathyroidism treatment. Development of TMSC spheroids may also provide a convenient and efficient scaffold-free platform for researchers investigating conditions involving abnormal calcium homeostasis, such as osteoporosis. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Health Sciences > School of Biomedical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE