Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Comprehensive Study on Critical Role of Surface Oxygen Vacancies for 2DEG Formation and Annihilation in LaAlO3/SrTiO3 Heterointerfaces

Authors
Moon, Seon YoungMoon, Cheon WooChang, Hye JungKim, TaeminKang, Chong-YunChoi, Heon-JinKim, Jin-SangBaek, Seung-HyubJang, Ho Won
Issue Date
3월-2016
Publisher
KOREAN INST METALS MATERIALS
Keywords
LaAlO3/SrTiO3; 2-dimensional electron gas; amorphous; oxygen vacancy; thermal stability
Citation
ELECTRONIC MATERIALS LETTERS, v.12, no.2, pp.243 - 250
Indexed
SCIE
SCOPUS
KCI
Journal Title
ELECTRONIC MATERIALS LETTERS
Volume
12
Number
2
Start Page
243
End Page
250
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/89272
DOI
10.1007/s13391-015-5402-5
ISSN
1738-8090
Abstract
Here we report comprehensive study of 2DEG at a-LAO/STO interfaces in comparison with 2DEG at crystalline LaAlO3 (c-LAO)/STO interfaces. We observe that the oxygen deficient environment during the deposition of LAO overlayer is essentially required to create 2DEG at LAO/STO interface regardless of growth temperature from 25 degrees C to 700 degrees C, indicating that the oxygen-poor condition in the system is more important than the crystallinity of LAO layer. The critical thickness (2.6 nm) of 2DEG formation at a-LAO/STO heterostructure is thicker than (1.6 nm) that at c-LAO/STO. Upon ex-situ annealing at 300 degrees C under 300 mTorr of oxygen pressure, 2DEG at a-LAO/STO interface is annihilated, while that in c-LAO/STO interface is still maintained. With combing these findings and scanning transmission electron microscope (STEM) analysis, we suggest that oxygen vacancies at the LAO surface is attributed to the origin of 2DEG formation at the LAO/STO and the crystallinity of the LAO overlayer plays a critical role in the annihilation of 2DEG at a-LAO/STO interface rather than in the formation of 2DEG. This work provides a framework to understand the importance of prohibiting the LAO surface from being oxidized for achieving thermally stable 2DEG at a-LAO/STO interface.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > KU-KIST Graduate School of Converging Science and Technology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE