Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Numerical prediction of the effect of uptake velocity on three-dimensional structure, porosity and permeability of meltblown nonwoven laydown

Authors
Ghosal, ArkaprovoSinha-Ray, SumanYarin, Alexander L.Pourdeyhimi, Behnam
Issue Date
24-2월-2016
Publisher
ELSEVIER SCI LTD
Keywords
Meltblowing; Permeability; Porosity
Citation
POLYMER, v.85, pp.19 - 27
Indexed
SCIE
SCOPUS
Journal Title
POLYMER
Volume
85
Start Page
19
End Page
27
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/89475
DOI
10.1016/j.polymer.2016.01.013
ISSN
0032-3861
Abstract
This work describes the first detailed model of meltblowing process which allows prediction of such integral laydown properties as thickness, porosity and permeability. Also, such laydown properties as the detailed three-dimensional micro-structure, fiber-size distribution and polymer mass distribution are predicted. The effects of the governing meltblowing parameters on the variation of all these laydown properties are accounted for, with the influence of the collector screen velocity being in focus. For this aim numerical solutions of the system of quasi-one-dimensional equations of the dynamics of free liquid polymer jets moving, cooling and solidifying when driven by surrounding air jet are constructed. Multiple polymer jets are considered simultaneously when they are deposited on a moving screen and forming a nonwoven laydown. The results reveal the three-dimensional configuration of the laydown and, in particular, its porosity and permeability, as well as elucidate the dependence of the laydown structure on the forming conditions, in particular, on the velocity of the screen motion. It is shown and explained how an increase in the velocity of the collector screen increases porosity and permeability of the meltblown nonwoven laydown. (C) 2016 Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > College of Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE