Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A density-based noisy graph partitioning algorithm

Authors
Yu, JaehongKim, Seoung Bum
Issue Date
29-1월-2016
Publisher
ELSEVIER
Keywords
Clustering algorithm; Nonlinearity; Density coefficient; Maximizing connectivity
Citation
NEUROCOMPUTING, v.175, pp.473 - 491
Indexed
SCIE
SCOPUS
Journal Title
NEUROCOMPUTING
Volume
175
Start Page
473
End Page
491
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/89761
DOI
10.1016/j.neucom.2015.10.085
ISSN
0925-2312
Abstract
Clustering analysis can facilitate the extraction of implicit patterns in a dataset and elicit its natural groupings without requiring prior classification information. Numerous researchers have focused recently on graph-based clustering algorithms because their graph structure is useful in modeling the local relationships among observations. These algorithms perform reasonably well in their intended applications. However, no consensus exists about which of them best satisfies all the conditions encountered in a variety of real situations. In this study, we propose a graph-based clustering algorithm based on a novel density-of-graph structure. In the proposed algorithm, a density coefficient defined for each node is used to classify dense and sparse nodes. The main structures of clusters are identified through dense nodes and sparse nodes that are assigned to specific clusters. Experiments on various simulation datasets and benchmark datasets were conducted to examine the properties of the proposed algorithm and to compare its performance with that of existing spectral clustering and modularity-based algorithms. The experimental results demonstrated that the proposed clustering algorithm performed better than its competitors; this was especially true when the cluster structures in the data were inherently noisy and nonlinearly distributed. (C) 2015 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Industrial and Management Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher KIM, Seoung Bum photo

KIM, Seoung Bum
공과대학 (산업경영공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE