Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

PINK1 expression increases during brain development and stem cell differentiation, and affects the development of GFAP-positive astrocytes

Authors
Choi, InsupChoi, Dong-JooYang, HaijieWoo, Joo HongChang, Mi-YoonKim, Joo YeonSun, WoongPark, Sang-MyunJou, IloLee, Sang HoonJoe, Eun-Hye
Issue Date
8-1월-2016
Publisher
BIOMED CENTRAL LTD
Keywords
PINK1; Neural stem cell; Astrocyte; Parkinson' s disease
Citation
MOLECULAR BRAIN, v.9
Indexed
SCIE
SCOPUS
Journal Title
MOLECULAR BRAIN
Volume
9
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/89822
DOI
10.1186/s13041-016-0186-6
ISSN
1756-6606
Abstract
Background: Mutation of PTEN-induced putative kinase 1 (PINK1) causes autosomal recessive early-onset Parkinson's disease (PD). Despite of its ubiquitous expression in brain, its roles in non-neuronal cells such as neural stem cells (NSCs) and astrocytes were poorly unknown. Results: We show that PINK1 expression increases from embryonic day 12 to postnatal day 1 in mice, which represents the main period of brain development. PINK1 expression also increases during neural stem cell (NSC) differentiation. Interestingly, expression of GFAP (a marker of astrocytes) was lower in PINK1 knockout (KO) mouse brain lysates compared to wild-type (WT) lysates at postnatal days 1-8, whereas there was little difference in the expression of markers for other brain cell types (e.g., neurons and oligodendrocytes). Further experiments showed that PINK1-KO NSCs were defective in their differentiation to astrocytes, producing fewer GFAP-positive cells compared to WT NSCs. However, the KO and WT NSCs did not differ in their self-renewal capabilities or ability to differentiate to neurons and oligodendrocytes. Interestingly, during differentiation of KO NSCs there were no defects in mitochondrial function, and there were not changes in signaling molecules such as SMAD1/5/8, STAT3, and HES1 involved in differentiation of NSCs into astrocytes. In brain sections, GFAP-positive astrocytes were more sparsely distributed in the corpus callosum and substantia nigra of KO animals compared with WT. Conclusion: Our study suggests that PINK1 deficiency causes defects in GFAP-positive astrogliogenesis during brain development and NSC differentiation, which may be a factor to increase risk for PD.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biomedical Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Sun, Woong photo

Sun, Woong
의과학과
Read more

Altmetrics

Total Views & Downloads

BROWSE