Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Controlling the magnetic properties of polymer-iron oxide nanoparticle composite thin films via spatial particle orientation

Authors
Koo, JaseungKim, HyeriKim, Ki-YeonJang, Young RaeLee, Jeong-SooYoon, Sung WonSuh, Byoung JinYu, TaekyungBang, JoonaYoon, KyunghwanYuan, GuangcuiSatija, Sushil K.
Issue Date
2016
Publisher
ROYAL SOC CHEMISTRY
Citation
RSC ADVANCES, v.6, no.61, pp.55842 - 55847
Indexed
SCIE
SCOPUS
Journal Title
RSC ADVANCES
Volume
6
Number
61
Start Page
55842
End Page
55847
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/90305
DOI
10.1039/c6ra10026k
ISSN
2046-2069
Abstract
We investigated the effect of Fe3O4 nanoparticle orientation on the magnetic properties of hybrid polymer nanocomposite thin films. A multilayer thin film consisting of alternating layers of polymers and assembled iron oxide nanoparticles was prepared by spin coating and Langmuir-Blodgett techniques. Transmission electron microscopy and neutron reflectivity measurements were employed to determine structural information related to the lateral orientation of the Fe3O4 nanoparticle monolayer and the layered architecture along the depth of the multilayer, respectively. The magnetic properties of the hybrid multilayer were characterized by SQUID magnetometry and compared with the properties of a spin-oated polymer nanocomposite thin film containing homogenously dispersed Fe3O4 nanoparticles. We found that the closely-packed monolayer structure of the Fe3O4 nanoparticles changed the magnetic properties on account of the dipolar interactions between particles, whereas the homogeneously-ispersed nanoparticles embedded in the polymer matrix exhibited zero remanent magnetization and coercivity due to isolation of the nanoparticles and lack of dipolar interactions.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE