Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Methods for Multiloop Identification of Visual and Neuromuscular Pilot Responses

Authors
Olivari, MarioNieuwenhuizen, Frank M.Venrooij, JoostBuelthoff, Heinrich H.Pollini, Lorenzo
Issue Date
Dec-2015
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Keywords
Haptic feedback; neuromuscular system; pilot identification; tracking task
Citation
IEEE TRANSACTIONS ON CYBERNETICS, v.45, no.12, pp.2780 - 2791
Indexed
SCIE
SCOPUS
Journal Title
IEEE TRANSACTIONS ON CYBERNETICS
Volume
45
Number
12
Start Page
2780
End Page
2791
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/91718
DOI
10.1109/TCYB.2014.2384525
ISSN
2168-2267
Abstract
In this paper, identification methods are proposed to estimate the neuromuscular and visual responses of a multiloop pilot model. A conventional and widely used technique for simultaneous identification of the neuromuscular and visual systems makes use of cross-spectral density estimates. This paper shows that this technique requires a specific noninterference hypothesis, often implicitly assumed, that may be difficult to meet during actual experimental designs. A mathematical justification of the necessity of the noninterference hypothesis is given. Furthermore, two methods are proposed that do not have the same limitations. The first method is based on autoregressive models with exogenous inputs, whereas the second one combines cross-spectral estimators with interpolation in the frequency domain. The two identification methods are validated by offline simulations and contrasted to the classic method. The results reveal that the classic method fails when the noninterference hypothesis is not fulfilled; on the contrary, the two proposed techniques give reliable estimates. Finally, the three identification methods are applied to experimental data from a closed-loop control task with pilots. The two proposed techniques give comparable estimates, different from those obtained by the classic method. The differences match those found with the simulations. Thus, the two identification methods provide a good alternative to the classic method and make it possible to simultaneously estimate human's neuromuscular and visual responses in cases where the classic method fails.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Brain and Cognitive Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE