Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Nanofibers Comprising Yolk-Shell Sn@void@SnO/SnO2 and Hollow SnO/SnO2 and SnO2 Nanospheres via the Kirkendall Diffusion Effect and Their Electrochemical Properties

Authors
Cho, Jung SangKang, Yun Chan
Issue Date
23-9월-2015
Publisher
WILEY-V C H VERLAG GMBH
Keywords
electrospinning; Kirkendall diffusion; Kirkendall effect; lithium ion batteries; nanostructured materials; tin oxide
Citation
SMALL, v.11, no.36, pp.4673 - 4681
Indexed
SCIE
SCOPUS
Journal Title
SMALL
Volume
11
Number
36
Start Page
4673
End Page
4681
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/92446
DOI
10.1002/smll.201500940
ISSN
1613-6810
Abstract
Nanofibers with a unique structure comprising Sn@void@SnO/SnO2 yolk-shell nanospheres and hollow SnO/SnO2 and SnO2 nanospheres are prepared by applying the nanoscale Kirkendall diffusion process in conventional electrospinning process. Under a reducing atmosphere, post-treatment of tin 2-ethylhexanoate-polyvinylpyrrolidone electrospun nanofibers produce carbon nanofibers with embedded spherical Sn nanopowders. The Sn nanopowders are linearly aligned along the carbon nanofiber axis without aggregation of the nanopowders. Under an air atmosphere, oxidation of the Sn-C composite nanofibers produce nanofibers comprising Sn@void@SnO/SnO2 yolk-shell nanospheres and hollow SnO/SnO2 and SnO2 nanospheres, depending on the post-treatment temperature. The mean sizes of the hollow nanospheres embedded within tin oxide nanofibers post-treated at 500 degrees C and 600 degrees C are 146 and 117 nm, respectively. For the 250th cycle, the discharge capacities of the nanofibers prepared by the nanoscale Kirkendall diffusion process post-treated at 400 degrees C, 500 degrees C, and 600 degrees C at a high current density of 2 A g(-1) are 663, 630, and 567 mA h g(-1), respectively. The corresponding capacity retentions are 77%, 84%, and 78%, as calculated from the second cycle. The nanofi bers prepared by applying the nanoscale Kirkendall diffusion process exhibit superior electrochemical properties compared with those of the porous-structured SnO2 nanofibers prepared by the conventional post-treatment process.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE