Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Modulated Degradation of Transient Electronic Devices through Multilayer Silk Fibroin Pockets

Authors
Brenckle, Mark A.Cheng, HuanyuHwang, SukwonTao, HuPaquette, MarkKaplan, David L.Rogers, John A.Huang, YonggangOmenetto, Fiorenzo G.
Issue Date
16-9월-2015
Publisher
AMER CHEMICAL SOC
Keywords
silk; fibroin; transient electronics; resorbable; degradation
Citation
ACS APPLIED MATERIALS & INTERFACES, v.7, no.36, pp.19870 - 19875
Indexed
SCIE
SCOPUS
Journal Title
ACS APPLIED MATERIALS & INTERFACES
Volume
7
Number
36
Start Page
19870
End Page
19875
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/92463
DOI
10.1021/acsami.5b06059
ISSN
1944-8244
Abstract
The recent introduction of transient, bioresorbable electronics into the field of electronic device design offers promise for the areas of medical implants and environmental monitors, where programmed loss of function and environmental resorption are advantageous characteristics. Materials challenges remain, however, in protecting the labile device components from degradation at faster than desirable rates. Here we introduce an indirect passivation strategy for transient electronic devices that consists of encapsulation in multiple air pockets fabricated from silk fibroin. This approach is investigated through the properties of silk as a diffusional barrier to water penetration, coupled with the degradation of magnesium-based devices in humid air. Finally, silk pockets are demonstrated to be useful for controlled modulation of device lifetime. This approach may provide additional future opportunities for silk utility due to the low immunogenicity of the material and its ability to stabilize labile biotherapeutic dopants.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > KU-KIST Graduate School of Converging Science and Technology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE