Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Downregulation of Poly(ADP-Ribose) Polymerase 1 by a Viral Processivity Factor Facilitates Lytic Replication of Gammaherpesvirus

Authors
Cheong, Woo-ChangPark, Joo-HeeKang, Hye-RiSong, Moon Jung
Issue Date
9월-2015
Publisher
AMER SOC MICROBIOLOGY
Citation
JOURNAL OF VIROLOGY, v.89, no.18, pp.9676 - 9682
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF VIROLOGY
Volume
89
Number
18
Start Page
9676
End Page
9682
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/92718
DOI
10.1128/JVI.00559-15
ISSN
0022-538X
Abstract
In Kaposi's sarcoma-associated herpesvirus (KSHV), poly(ADP-ribose) polymerase 1 (PARP-1) acts as an inhibitor of lytic replication. Here, we demonstrate that KSHV downregulated PARP-1 upon reactivation. The viral processivity factor of KSHV (PF-8) interacted with PARP-1 and was sufficient to degrade PARP-1 in a proteasome-dependent manner; this effect was conserved in murine gammaherpesvirus 68. PF-8 knockdown in KSHV-infected cells resulted in reduced lytic replication upon reactivation with increased levels of PARP-1, compared to those in control cells. PF-8 overexpression reduced the levels of the poly(ADP-ribosyl)ated (PARylated) replication and transcription activator (RTA) and further enhanced RTA-mediated transactivation. These results suggest a novel viral mechanism for overcoming the inhibitory effect of a host factor, PARP-1, thereby promoting the lytic replication of gammaherpesvirus. IMPORTANCE Gammaherpesviruses are important human pathogens, as they are associated with various kinds of tumors and establish latency mainly in host B lymphocytes. Replication and transcription activator (RTA) of Kaposi's sarcoma-associated herpesvirus (KSHV) is a central molecular switch for lytic replication, and its expression is tightly regulated by many host and viral factors. In this study, we investigated a viral strategy to overcome the inhibitory effect of poly(ADP-ribose) polymerase 1 (PARP-1) on RTA's activity. PARP-1, an abundant multifunctional nuclear protein, was downregulated during KSHV reactivation. The viral processivity factor of KSHV (PF-8) directly interacted with PARP-1 and was sufficient and necessary to degrade PARP-1 protein in a proteasome-dependent manner. PF-8 reduced the levels of PARylated RTA and further promoted RTA-mediated transactivation. As this was also conserved in another gammaherpesvirus, murine gammaherpesvirus 68, our results suggest a conserved viral modulation of a host inhibitory factor to facilitate its lytic replication.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biotechnology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Song, Moon Jung photo

Song, Moon Jung
융합생명공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE