Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Collision analysis and safety evaluation using a collision model for the frontal robot-human impact

Authors
Park, Jung-JunSong, Jae-BokHaddadin, Sami
Issue Date
8월-2015
Publisher
CAMBRIDGE UNIV PRESS
Keywords
Physical human-robot interaction; Collision analysis and model; Safe robots; Human injury analysis
Citation
ROBOTICA, v.33, no.7, pp.1536 - 1550
Indexed
SCIE
SCOPUS
Journal Title
ROBOTICA
Volume
33
Number
7
Start Page
1536
End Page
1550
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/92837
DOI
10.1017/S0263574714000137
ISSN
0263-5747
Abstract
The safety analysis of human-robot collisions has recently drawn significant attention, as robots are increasingly used in human environments. In order to understand the potential injury a robot could cause in case of an impact, such incidents should be evaluated before designing a robot arm based on biomechanical safety criteria. In recent literature, such incidents have been investigated mostly by experimental crash-testing. However, experimental methods are expensive, and the design parameters of the robot arm are difficult to change instantly. In order to solve this issue, we propose a novel robot-human collision model consisting of a 6-degree-of-freedom mass-spring-damper system for impact analysis. Since the proposed robot-human consists of a head, neck, chest, and torso, the relative motion among these body parts can be analyzed. In this study, collision analysis of impacts to the head, neck, and chest at various collision speeds are conducted using the proposed collision model. Then, the degree of injury is estimated by using various biomechanical severity indices. The reliability of the proposed collision model is verified by comparing the obtained simulation results with experimental results from literature. Furthermore, the basic requirements for the design of safer robots are determined.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Song, Jae Bok photo

Song, Jae Bok
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE