Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Online updating of context-aware landmark detectors for prostate localization in daily treatment CT images

Authors
Dai, XiubinGao, YaozongShen, Dinggang
Issue Date
5월-2015
Publisher
WILEY
Keywords
online update; prostate segmentation; context-aware landmark detection; regression forest
Citation
MEDICAL PHYSICS, v.42, no.5, pp.2594 - 2606
Indexed
SCIE
SCOPUS
Journal Title
MEDICAL PHYSICS
Volume
42
Number
5
Start Page
2594
End Page
2606
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/93804
DOI
10.1118/1.4918755
ISSN
0094-2405
Abstract
Purpose: In image guided radiation therapy, it is crucial to fast and accurately localize the prostate in the daily treatment images. To this end, the authors propose an online update scheme for landmarkguided prostate segmentation, which can fully exploit valuable patient-specific information contained in the previous treatment images and can achieve improved performance in landmark detection and prostate segmentation. Methods: To localize the prostate in the daily treatment images, the authors first automatically detect six anatomical landmarks on the prostate boundary by adopting a context-aware landmark detection method. Specifically, in this method, a two-layer regression forest is trained as a detector for each target landmark. Once all the newly detected landmarks from new treatment images are reviewed or adjusted (if necessary) by clinicians, they are further included into the training pool as new patient-specific information to update all the two-layer regression forests for the next treatment day. As more and more treatment images of the current patient are acquired, the two-layer regression forests can be continually updated by incorporating the patient-specific information into the training procedure. After all target landmarks are detected, a multiatlas random sample consensus (multiatlas RANSAC) method is used to segment the entire prostate by fusing multiple previously segmented prostates of the current patient after they are aligned to the current treatment image. Subsequently, the segmented prostate of the current treatment image is again reviewed (or even adjusted if needed) by clinicians before including it as a new shape example into the prostate shape dataset for helping localize the entire prostate in the next treatment image. Results: The experimental results on 330 images of 24 patients show the effectiveness of the authors' proposed online update scheme in improving the accuracies of both landmark detection and prostate segmentation. Besides, compared to the other state-of-the-art prostate segmentation methods, the authors' method achieves the best performance. Conclusions: By appropriate use of valuable patient-specific information contained in the previous treatment images, the authors' proposed online update scheme can obtain satisfactory results for both landmark detection and prostate segmentation. (C) 2015 American Association of Physicists in Medicine.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE