Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Ultrathin supercapacitor electrodes with high volumetric capacitance and stability using direct covalent-bonding between pseudocapacitive nanoparticles and conducting materials

Authors
Ko, YongminShin, DongyeebKoo, BonkeeLee, Seung WooYoon, Won-SubCho, Jinhan
Issue Date
3월-2015
Publisher
ELSEVIER
Keywords
Direct covalent bonding; Ultrathin supercapactior; Multilayers; Amine-functionalized multiwall carbon nanotube; Oleic acid-stabilized transition metal oxide; Layer-by-layer assembly
Citation
NANO ENERGY, v.12, pp.612 - 625
Indexed
SCIE
SCOPUS
Journal Title
NANO ENERGY
Volume
12
Start Page
612
End Page
625
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/94283
DOI
10.1016/j.nanoen.2015.01.002
ISSN
2211-2855
Abstract
We introduce high-performance ultrathin supercapacitor electrodes obtained through the direct covalent-bonding layer-by-layer (LbL) assembly (or ligand-exchange LbL assembly) of amine-functionalized multiwalled carbon nanotubes (CNTs) and transition metal oxide nanoparticles (TMO NPs). The main characteristic of our approach is that the internal interfacial resistance of the electrodes can be minimized through the direct covalent-bonding adsorption of densely packed, high-quality TMO NPs onto CNTs without the aid of nonactive binders or insulating NP ligands, and the resulting volumetric capacitance and cycling stability of the electrodes can be significantly enhanced. For this study, well-defined oleic acid-stabilized pseudocapacitive metal oxide nanoparticles (i.e., OA-Fe3O4 and OA-MnO NPs) prepared in toluene were densely adsorbed onto the CNT layer due to the high affinity between the surface of the TMO NPs and the NH2 moieties of the CNTs. The (CNT/OA-Fe3O4 NP)(20) multilayer electrode exhibited a high volumetric capacitance of 248 +/- 15 F cm(-3) (128 +/- 7 F g(-1)) at 5 mV s(-1) despite the intrinsically low specific capacitance of the Fe3O4 NPs. Additionally, these film electrodes exhibited high performance stability, maintaining 99.2% of their initial capacitance after 1000 cycles. Furthermore, upon the insertion of OA-MnO NPs with high crystallinity and a high theoretical pseudocapacitance value within multilayers instead of OA-Fe3O4 NPs, the formed electrodes (i.e., (CNT/OA-MnO NP)70 multilayers) exhibited a higher volumetric capacitance of 305 +/- 10 F cm(-3) (183 +/- 5 F g(-1)) (at a scan rate of 5 mV s(-1)) than other conventional ultrathin supercapacitor electrodes, including manganese oxide or iron oxide NPs. (C) 2015 Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Jin han photo

Cho, Jin han
공과대학 (화공생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE