Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Tailor-Made Polyamide Membranes for Water Desalination

Authors
Choi, WansukGu, Joung-EunPark, Sang-HeeKim, SeyongBang, JoonaBaek, Kyung-YoulPark, ByoungnamLee, Jong SukChan, Edwin P.Lee, Jung-Hyun
Issue Date
1월-2015
Publisher
AMER CHEMICAL SOC
Keywords
molecular layer-by-layer; polyamide; reverse osmosis; thin film composite membrane; water desalination
Citation
ACS NANO, v.9, no.1, pp.345 - 355
Indexed
SCIE
SCOPUS
Journal Title
ACS NANO
Volume
9
Number
1
Start Page
345
End Page
355
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/94687
DOI
10.1021/nn505318v
ISSN
1936-0851
Abstract
Independent control of the extrinsic and intrinsic properties of the polyamide (PA) selective layer is essential for designing thin-film composite (TFC) membranes with performance characteristics required for water purification applications besides seawater desalination. Current commercial TFC membranes fabricated via the well-established interfacial polymerization (IP) approach yield materials that are far from ideal because their layer thickness, surface roughness, polymer chemistry, and network structure cannot be separately tailored. In this work, tailor-made PA-based desalination membranes based on molecular layer-by-layer (mLbL) assembly are presented. The mLbL technique enables the construction of an ultrathin and highly cross-linked PA seletive layer in a precisely and independently controlled manner. The mLbL-assembled TFC membranes exhibit significant enhancements in performance compared to their IP-assembled counterparts. A maximum sodium chloride rejection of 98.2% is achieved along with over 2.5 times higher water flux than the IP-assembled counterpart. More importantly, this work demonstrates the broad applicability of mLbL in fabricating a variety of PA-based TFC membranes with nanoscale control of the selective layer thickness and roughness independent of the specific polyamide chemistry.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher LEE, Jung hyun photo

LEE, Jung hyun
공과대학 (화공생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE