Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Low-bandgap biophotonic nanoblend: A platform for systemic disease targeting and functional imaging

Authors
Seo, Young HunCho, Mm JuCheong, Oug JaeJang, Woo-DongOhulchanskyy, Tymish Y.Lee, SangyoupChoi, Dong HoonPrasad, Paras N.Kim, Sehoon
Issue Date
Jan-2015
Publisher
ELSEVIER SCI LTD
Keywords
Biosensors; Hypoxia; Imaging agents; Low-bandgap conjugated polymers; Nanoparticles
Citation
BIOMATERIALS, v.39, pp.225 - 233
Indexed
SCIE
SCOPUS
Journal Title
BIOMATERIALS
Volume
39
Start Page
225
End Page
233
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/94693
DOI
10.1016/j.biomaterials.2014.10.074
ISSN
0142-9612
Abstract
Photonic nanomaterials have found wide applications in theranostics. We introduce here a design of allorganic photonic nanoparticles, different from traditional ones, in which we utilize nanoblend of a low-bandgap pi-conjugated polymer (LB-CP) and polystyrene as the photonic core, surrounded by an FDA-approved polymeric surfactant. This design provides capability for efficient deep tissue imaging using highly penetrating near-infrared (NIR) excitation and emission of LB-CP and also allows us to incorporate a NIR phosphorescent oxygen-sensitive dye in the core to serve as a dual-emissive probe for hypoxia imaging. These biophotonic nanoblend (BNB) particles (similar to 20 nm in diameter) show facile blood circulation, efficient disease targeting and minimal liver filtration as well as sustained renal excretion in the intravenously administered mouse models, as noninvasively visualized by the NIR emission signals. In diseased mouse models, pathological tissue deoxygenation at hypoxic sites was successfully detected with ratiometric spectral information. We also show that our nanoformulation exhibits no apparent toxicity, thus serving as a versatile biophotonics platform for diagnostic imaging. (C) 2014 Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher CHOI, DONG HOON photo

CHOI, DONG HOON
College of Science (Department of Chemistry)
Read more

Altmetrics

Total Views & Downloads

BROWSE