Semiconducting behavior of bilayer graphene synthesized by plasma-enhanced chemical vapor deposition and its application in field effect transistors
- Authors
- Zhao, Yu; Park, Chang Soo; Fei, Wei Dong; Lee, Cheol Jin
- Issue Date
- 1-12월-2014
- Publisher
- ELSEVIER SCIENCE BV
- Keywords
- Graphene; Defects; Semiconducting behavior; Bandgap
- Citation
- MATERIALS LETTERS, v.136, pp.103 - 106
- Indexed
- SCIE
SCOPUS
- Journal Title
- MATERIALS LETTERS
- Volume
- 136
- Start Page
- 103
- End Page
- 106
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/96554
- DOI
- 10.1016/j.matlet.2014.08.028
- ISSN
- 0167-577X
- Abstract
- We demonstrated the generation of a bandgap in the bilayer graphene synthesized by plasma-enhanced chemical vapor deposition. By adjusting the growth time, the defect density and nano-crystallite size of bilayer graphene were easily controlled, affecting the bandgap of bilayer graphene and the field effect mobility of bilayer graphene field effect transistor (FET). The defect density increased with increasing growth time, whereas the nano-crystallite size decreased. The semiconducting behavior of bilayer graphene was observed by measuring the temperature-dependent conductivity. Defects generated by plasma radiation induce broken symmetry in graphene, thus opening a bandgap. The bandgap energies in the bilayer graphene are 90,156, and 187 meV for growth times of 5, 10, and 30 min, respectively. The back-gate bilayer graphene FET presented the p-type semiconducting behavior and the field effect mobility of approximately 1000 cm(2) V-1 s(-1) when the bandgap energy was 156 meV. (C) 2014 Elsevier B.V. All rights reserved.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > School of Electrical Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.