Sensitive and selective analysis of a wide concentration range of IGFBP7 using a surface plasmon resonance biosensor
- Authors
- Jang, Dae-Ho; Choi, Youngbo; Choi, Yong-Soo; Kim, Sun-Mi; Kwak, Hojung; Shin, Se-Hyun; Hong, Surin
- Issue Date
- 1-11월-2014
- Publisher
- ELSEVIER SCIENCE BV
- Keywords
- Surface plasmon resonance biosensor; IGFBP7; Cellular secretion; Sensitive detection; Specificity
- Citation
- COLLOIDS AND SURFACES B-BIOINTERFACES, v.123, pp.887 - 891
- Indexed
- SCIE
SCOPUS
- Journal Title
- COLLOIDS AND SURFACES B-BIOINTERFACES
- Volume
- 123
- Start Page
- 887
- End Page
- 891
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/96808
- DOI
- 10.1016/j.colsurfb.2014.10.037
- ISSN
- 0927-7765
- Abstract
- A sensitive method for selectively detecting insulin-like growth factor-binding protein 7 (IGFBP7) over a wide range of concentrations based on the surface plasmon resonance (SPR) biosensing techniques is described. IGFBP7 has been shown to regulate cell proliferation, cell adhesion, cellular senescence, apoptosis, and angiogenesis in several different cancer cell lines. Since the concentration of IGFBP7 can vary widely in the body, determining the precise concentration of IGFBP7 over a wide range of concentrations is important, since it serves as an inducible biomarker for both disease diagnosis and subsequent therapy. The SPR sensing method is based on the selective interaction of IGFBP7 with specific anti-IGFBP7 proteins on a gold thin film, which was covalently bound to the Fc-binding domain of protein G on a mixed self-assembled monolayer composed of DSNHS (S-2(CH2)(11)COO(CH2)(2)COO-(N-hydroxysuccinimide)) and mercaptoundecanol, and effect of this on changes in the SPR profiles. The limit of detection (LOD) of the SPR biosensor was determined to be 10 ng/ml, which is a reasonable LOD value for biomedical applications. The response is essentially linear in the concentration range of 10-300 ng/ml. The SPRbiosensor also shows specificity for IGFBP7 compared to that for biologically relevant interleukin (IL) derivatives including IL4, IL23, IL29, and IFG1. These molecules are also present along with IGFBP7 in the cell culture medium and have the potential to interfere with the analysis. Finally, the level secretion of IGFBP7 from cancer cells detected by the SPR biosensor showed a good correlation with a commercial kit using an IGFBP7 enzyme-linked immunosorbent assay. The findings reported herein indicate that the SPR biosensor for IGFBP7 would be applicable in a wide variety of biomedical fields. (C) 2014 Elsevier B.V. All rights reserved.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > Department of Mechanical Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.