Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Application of one-body hybrid solid pellets to sorption-enhanced water gas shift reaction for high-purity hydrogen production

Authors
Lee, Chan HyunLee, Ki Bong
Issue Date
22-10월-2014
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Hydrogen production; Sorption-enhanced water gas shift reaction; CO2 sorption; One-body hybrid solid pellet; Multi-section packing
Citation
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, v.39, no.31, pp.18128 - 18134
Indexed
SCIE
SCOPUS
Journal Title
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume
39
Number
31
Start Page
18128
End Page
18134
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/97058
DOI
10.1016/j.ijhydene.2014.04.160
ISSN
0360-3199
Abstract
Interest in hydrogen, regarded as a new clean energy carrier, has been increasing with expectation of the approaching hydrogen economy. In the hydrogen economy, hydrogen will replace the conventional fuels that have caused pollution problems. As one of the methods for the mass production of hydrogen, water gas shift (WGS) reaction (CO + H2O <-> H-2 + CO2) has been highlighted for synthesis gas feed, which is produced by coal and biomass gasification. Recently, the performance of WGS reaction has been improved significantly through application of the sorption-enhanced WGS (SE-WGS) reaction concept, where WGS reaction and CO2 sorption are carried out simultaneously. High-purity hydrogen can be directly produced through the SE-WGS reaction, without need for further purification processes. In the SE-WGS reaction, uniform packing of the mixture of catalyst and sorbent is important; however, this is difficult to manage with conventional catalyst and sorbent pellets. In this study, novel one-body hybrid solid pellets consisting of the mixture of catalyst and sorbent were prepared to address this shortcoming and applied to SE-WGS reactions. From experiments, the effect of different ratio of catalyst/sorbent in one-body hybrid solid pellets was studied. A novel multi-section packing concept was also applied to SE-WGS reaction with one-body hybrid solid pellets. The experimental results showed that one-body hybrid solid pellets can be successfully used and that multi-section packing can increase the hydrogen productivity in SE-WGS reaction. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Ki Bong photo

Lee, Ki Bong
공과대학 (화공생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE