Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Global Transcriptome and Physiological Responses of Acinetobacter oleivorans DR1 Exposed to Distinct Classes of Antibiotics

Authors
Heo, AramJang, Hyun-JinSung, Jung-SukPark, Woojun
Issue Date
17-10월-2014
Publisher
PUBLIC LIBRARY SCIENCE
Citation
PLOS ONE, v.9, no.10
Indexed
SCIE
SCOPUS
Journal Title
PLOS ONE
Volume
9
Number
10
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/97082
DOI
10.1371/journal.pone.0110215
ISSN
1932-6203
Abstract
The effects of antibiotics on environment-originated nonpathogenic Acinetobacter species have been poorly explored. To understand the antibiotic-resistance mechanisms that function in nonpathogenic Acinetobacter species, we used an RNA-sequencing (RNA-seq) technique to perform global gene-expression profiling of soil-borne Acinetobacter oleivorans DR1 after exposing the bacteria to 4 classes of antibiotics (ampicillin, Amp; kanamycin, Km; tetracycline, Tc; norfloxacin, Nor). Interestingly, the well-known two global regulators, the soxR and the rpoE genes are present among 41 commonly upregulated genes under all 4 antibiotic-treatment conditions. We speculate that these common genes are essential for antibiotic resistance in DR1. Treatment with the 4 antibiotics produced diverse physiological and phenotypic changes. Km treatment induced the most dramatic phenotypic changes. Examination of mutation frequency and DNA-repair capability demonstrated the induction of the SOS response in Acinetobacter especially under Nor treatment. Based on the RNA-seq analysis, the glyoxylate-bypass genes of the citrate cycle were specifically upregulated under Amp treatment. We also identified newly recognized non-coding small RNAs of the DR1 strain, which were also confirmed by Northern blot analysis. These results reveal that treatment with antibiotics of distinct classes differentially affected the gene expression and physiology of DR1 cells. This study expands our understanding of the molecular mechanisms of antibiotic-stress response of environment-originated bacteria and provides a basis for future investigations.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Environmental Science and Ecological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Woo jun photo

Park, Woo jun
생명과학대학 (환경생태공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE