Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Graphene-based field effect transistor enzymatic glucose biosensor using silk protein for enzyme immobilization and device substrate

Authors
You, XueqiuPak, James Jungho
Issue Date
Oct-2014
Publisher
ELSEVIER SCIENCE SA
Keywords
Graphene FET biosensor; Silk protein; Enzyme stabilization; Glucose biosensor
Citation
SENSORS AND ACTUATORS B-CHEMICAL, v.202, pp.1357 - 1365
Indexed
SCIE
SCOPUS
Journal Title
SENSORS AND ACTUATORS B-CHEMICAL
Volume
202
Start Page
1357
End Page
1365
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/97227
DOI
10.1016/j.snb.2014.04.079
ISSN
0925-4005
Abstract
A silk fibroin-encapsulated graphene field effect transistor (FET) enzymatic biosensor that utilizes silk protein as both device substrate and enzyme immobilization material was developed for glucose detection. This biosensor detected glucose levels by measuring the differential drain-source current and the Dirac point shift of the graphene transistor as the glucose is oxidized by glucose oxidase that was immobilized in silk fibroin film on the graphene FET. The fabricated biosensors showed 0.1-10 mM large linear detection range, which covers the reference range of medical examination for diabetes diagnostics. The detection limit of the fabricated biosensors was approximately 0.1 mM (S/N= 3) with excellent selectivity, and the average sensitivity was 2.5 mu A/mM measured at V-ds = 100 mV and V-g = 0V. Because this fibroin-encapsulated graphene FET enzymatic biosensor is biocompatible, flexible, and long-term stable, it holds a great promise for portable, wearable, and implantable continuous glucose monitoring applications. (C) 2014 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Pak, James Jung ho photo

Pak, James Jung ho
College of Engineering (School of Electrical Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE