Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Porous gelatin-siloxane hybrid scaffolds with biomimetic structure and properties for bone tissue regeneration

Authors
Lei, BoShin, Kwan-HaKoh, Young-HagKim, Hyoun-Ee
Issue Date
10월-2014
Publisher
WILEY
Keywords
gelatin; silica; porous structure; tissue regeneration; scaffold
Citation
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, v.102, no.7, pp.1528 - 1536
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS
Volume
102
Number
7
Start Page
1528
End Page
1536
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/97302
DOI
10.1002/jbm.b.33133
ISSN
1552-4973
Abstract
We produced highly porous gelatin-siloxane (GLA-S) hybrid scaffolds with biomimetic anisotropic porous structure, physiochemical properties, mechanical behaviors and biological functions by treating gelatin-siloxane hybrid gels in an ammonium hydroxide solution. The siloxane used as an inorganic phase could effectively crosslink the gelatin polymer, which allowed for the unidirectional enlargement of ammonia vacuoles during ammonium hydroxide treatment. This created aligned pores in an axial direction when the siloxane contents (10 and 20 wt %) were high. In addition, the gelatin polymer could be uniformly hybridized with the siloxane phase at the molecular level, while intense interaction between these two phases could be achieved. This resulted in a significant increase in mechanical properties. The GLA-S hybrid scaffold with a siloxane content of 10 wt % showed reasonably high compressive yield strength of 4.260.1 MPa and compressive modulus of 8465 MPa at a porosity of 86 vol %, which would be comparable to those of natural cancellous bone. In addition, the GLA-S hybrid scaffold had good biocompatibility assessed by in vitro cell tests using pre-osteoblast MC3T3-E1 cells. (C) 2014 Wiley Periodicals, Inc.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Bioengineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Koh, Young Hag photo

Koh, Young Hag
바이오의공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE