Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Denoising traffic collision data using Ensemble Empirical Mode Decomposition (EEMD) and its application for constructing Continuous Risk Profile (CRP)

Authors
Kim, Nam-SeogChung, KoohongAhn, SeongchaeYu, Jeong WhonChoi, Keechoo
Issue Date
10월-2014
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Empirical Mode Decomposition; Intrinsic Mode Function; Continuous Risk Profile; Traffic collision
Citation
ACCIDENT ANALYSIS AND PREVENTION, v.71, pp.29 - 37
Indexed
SSCI
SCOPUS
Journal Title
ACCIDENT ANALYSIS AND PREVENTION
Volume
71
Start Page
29
End Page
37
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/97331
DOI
10.1016/j.aap.2014.05.007
ISSN
0001-4575
Abstract
Filtering out the noise in traffic collision data is essential in reducing false positive rates (i.e., requiring safety investigation of sites where it is not needed) and can assist government agencies in better allocating limited resources. Previous studies have demonstrated that denoising traffic collision data is possible when there exists a true known high collision concentration location (HCCL) list to calibrate the parameters of a denoising method. However, such a list is often not readily available in practice. To this end, the present study introduces an innovative approach for denoising traffic collision data using the Ensemble Empirical Mode Decomposition (EEMD) method which is widely used for analyzing nonlinear and nonstationary data. The present study describes how to transform the traffic collision data before the data can be decomposed using the EEMD method to obtain set of Intrinsic Mode Functions (IMFs) and residue. The attributes of the IMFs were then carefully examined to denoise the data and to construct Continuous Risk Profiles (CRPs). The findings from comparing the resulting CRP profiles with CRPs in which the noise was filtered out with two different empirically calibrated weighted moving window lengths are also documented, and the results and recommendations for future research are discussed. Published by Elsevier Ltd.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Civil, Environmental and Architectural Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE