Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Are Sensory TRP Channels Biological Alarms for Lipid Peroxidation?

Authors
Choi, Seung-InYoo, SungjaeLim, Ji YeonHwang, Sun Wook
Issue Date
9월-2014
Publisher
MDPI
Keywords
sensory TRP ion channels; pain; lipid peroxidation; oxidative stress
Citation
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.15, no.9, pp.16430 - 16457
Indexed
SCIE
SCOPUS
Journal Title
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
Volume
15
Number
9
Start Page
16430
End Page
16457
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/97517
DOI
10.3390/ijms150916430
ISSN
1661-6596
Abstract
Oxidative stress induces numerous biological problems. Lipid oxidation and peroxidation appear to be important steps by which exposure to oxidative stress leads the body to a disease state. For its protection, the body has evolved to respond to and eliminate peroxidation products through the acquisition of binding proteins, reducing and conjugating enzymes, and excretion systems. During the past decade, researchers have identified a group of ion channel molecules that are activated by oxidized lipids: transient receptor potential (TRP) channels expressed in sensory neurons. These ion channels are fundamentally detectors and signal converters for body-damaging environments such as heat and cold temperatures, mechanical attacks, and potentially toxic substances. When messages initiated by TRP activation arrive at the brain, we perceive pain, which results in our preparing defensive responses. Excessive activation of the sensory neuronal TRP channels upon prolonged stimulations sometimes deteriorates the inflammatory state of damaged tissues by promoting neuropeptide release from expresser neurons. These same paradigms may also work for pathologic changes in the internal lipid environment upon exposure to oxidative stress. Here, we provide an overview of the role of TRP channels and oxidized lipid connections during abnormally increased oxidative signaling, and consider the sensory mechanism of TRP detection as an alert system.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biomedical Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hwang, Sun Wook photo

Hwang, Sun Wook
의과학과
Read more

Altmetrics

Total Views & Downloads

BROWSE