Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Multi-lineage differentiation of human mesenchymal stromal cells on the biophysical microenvironment of cell-derived matrix

Authors
Choi, Dong HoonSuhaeri, MuhammadHwang, Mintai P.Kim, Ik HwanHan, Dong KeunPark, Kwideok
Issue Date
Sep-2014
Publisher
SPRINGER
Keywords
Cell-derived matrix; Microenvironment; Human mesenchymal stromal cells; Osteogenesis; Chondrogenesis
Citation
CELL AND TISSUE RESEARCH, v.357, no.3, pp.781 - 792
Indexed
SCIE
SCOPUS
Journal Title
CELL AND TISSUE RESEARCH
Volume
357
Number
3
Start Page
781
End Page
792
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/97600
DOI
10.1007/s00441-014-1898-5
ISSN
0302-766X
Abstract
We obtained fibroblast- (FDM) and preosteoblast- (PDM) derived matrices in vitro from their respective cells. Our hypothesis was that these naturally occurring cell-derived matrices (CDMs) would provide a better microenvironment for the multi-lineage differentiation of human mesenchymal stromal cells (hMSCs) than those based on traditional single-protein-based platforms. Cells cultured for 5-6 days were decellularized with detergents and enzymes. The resulting matrices showed a fibrillar surface texture. Under osteogenic conditions, human bone-marrow-derived stromal cells (HS-5) exhibited higher amounts of both mineralized nodule formation and alkaline phosphatase (ALP) expression than those cultured on plastic or gelatin. Osteogenic markers (Col I, osteopontin, and cbfa1) and ALP activity from cells cultured on PDM were notably upregulated at 4 weeks. The use of FDM significantly improved the cellular expression of chondrogenic markers (Sox 9 and Col II), while downregulating that of Col I at 4 weeks. Both CDMs were more effective in inducing cellular synthesis of glycosaminoglycan content than control substrates. We also investigated the effect of matrix surface texture on hMSC (PT-2501) differentiation; soluble matrix (S-matrix)-coated substrates exhibited a localized fibronectin (FN) alignment, whereas natural matrix (N-matrix)-coated substrates preserved the naturally formed FN fibrillar alignment. hMSCs cultured for 4 weeks on N-matrices under osteogenic or chondrogenic conditions deposited a greater amount of calcium and proteoglycan than those cultured on S-matrices as assessed by von Kossa and Safranin O staining. In contrast to the expression levels of lineage-specific markers for cells cultured on gelatin, FN, or S-matrices, those cultured on N-matrices yielded highly upregulated levels. This study demonstrates not only the capacity of CDM for being an effective inductive template for the multi-lineage differentiation of hMSCs, but also the critical biophysical role that the matrix fibrillar texture itself plays on the induction of stem cell differentiation.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Life Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE