Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Spin current generated by thermally driven ultrafast demagnetization

Authors
Choi, Gyung-MinMin, Byoung-ChulLee, Kyung-JinCahill, David G.
Issue Date
7월-2014
Publisher
NATURE PUBLISHING GROUP
Citation
NATURE COMMUNICATIONS, v.5
Indexed
SCIE
SCOPUS
Journal Title
NATURE COMMUNICATIONS
Volume
5
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/98060
DOI
10.1038/ncomms5334
ISSN
2041-1723
Abstract
Spin current is the key element for nanoscale spintronic devices. For ultrafast operation of such nano-devices, generation of spin current in picoseconds, a timescale that is difficult to achieve using electrical circuits, is highly desired. Here we show thermally driven ultrafast demagnetization of a perpendicular ferromagnet leads to spin accumulation in a normal metal and spin transfer torque in an in-plane ferromagnet. The data are well described by models of spin generation and transport based on differences and gradients of thermodynamic parameters. The temperature difference between electrons and magnons is the driving force for spin current generation by ultrafast demagnetization. On longer timescales, a few picoseconds following laser excitation, we also observe a small contribution to spin current by a temperature gradient and the spin-dependent Seebeck effect.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE