Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Destabilization of i-Motif by Submolar Concentrations of a Monovalent Cation

Authors
Kim, Sung EunLee, Il-BuemHyeon, ChangbongHong, Seok-Cheol
Issue Date
8-5월-2014
Publisher
AMER CHEMICAL SOC
Citation
JOURNAL OF PHYSICAL CHEMISTRY B, v.118, no.18, pp.4753 - 4760
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF PHYSICAL CHEMISTRY B
Volume
118
Number
18
Start Page
4753
End Page
4760
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/98526
DOI
10.1021/jp500120d
ISSN
1520-6106
Abstract
Counterions are crucial for self-assembly of nucleic acids. Submolar monovalent cations are generally deemed to stabilize various types of base pairs in nucleic acids such as Watson-Crick and Hoogsteen base pairs via screening of electrostatic repulsion. Besides monovalent cations, acidic pH is required for i-motif formation because protons facilitate pairing between cytosines. Here we report that Li+ ions destabilize i-motif, whereas other monovalent cations, Na+ and K+, have the usual stabilizing effect. The thermodynamics data alone, however, cannot reveal which mechanism, enhanced unfolding or suppressed folding or both, is responsible for the Li+-induced destabilization. To gain further insight, we examined the kinetics of i-motif. To deal with slow kinetics of i-motif, we developed a method dubbed HaRP to construct a long FRET time trace to observe a sufficient number of transitions. Our kinetics analysis shows clearly that Li+ ions promote unfolding of i-motif but do not hinder its folding, lending strong support for our hypothesis on the origin of this unusual effect of Li+. Although the subangstrom size of Li+ ions allows them to infiltrate the space between cytosines in competition with protons, they cannot adequately fulfill the role of protons in mediating the hydrogen bonding of cytosine pairs.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Physics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher HONG, Seok Cheol photo

HONG, Seok Cheol
이과대학 (물리학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE