Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Mechanosensitive physiology of chlamydomonas reinhardtii under direct membrane distortion

Authors
Min, Seul KiYoon, Gwang HeumJoo, Jung HyunSim, Sang JunShin, Hwa Sung
Issue Date
14-4월-2014
Publisher
NATURE PUBLISHING GROUP
Citation
SCIENTIFIC REPORTS, v.4
Indexed
SCIE
SCOPUS
Journal Title
SCIENTIFIC REPORTS
Volume
4
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/98765
DOI
10.1038/srep04675
ISSN
2045-2322
Abstract
Cellular membrane distortion invokes variations in cellular physiology. However, lack of an appropriate system to control the stress and facilitate molecular analyses has hampered progress of relevant studies. In this study, a microfluidic system that finely manipulates membrane distortion of Chlamydomonas reinhardtii (C. reinhardtii) was developed. The device facilitated a first-time demonstration that directs membrane distortion invokes variations in deflagellation, cell cycle, and lipid metabolism. C. reinhardtii showed a prolonged G(1) phase with an extended total cell cycle time, and upregulated Mat3 regulated a cell size and cell cycle. Additionally, increased TAG compensated for the loss of cell mass. Overall, this study suggest that cell biology that requires direct membrane distortion can be realized using this system, and the implication of cell cycle with Mat3 expression of C. reinhardtii was first demonstrated. Finally, membrane distortion can be an attractive inducer for biodiesel production since it is reliable and robust.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Sim, Sang Jun photo

Sim, Sang Jun
공과대학 (화공생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE