Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Insulin-like growth factor I induces proliferation and migration of porcine trophectoderm cells through multiple cell signaling pathways, including protooncogenic protein kinase 1 and mitogen-activated protein kinase

Authors
Jeong, WooyoungSong, GwonhwaBazer, Fuller W.Kim, Jinyoung
Issue Date
25-3월-2014
Publisher
ELSEVIER IRELAND LTD
Keywords
Pig; Insulin-like growth factor; Trophoblast; Proliferation; Migration
Citation
MOLECULAR AND CELLULAR ENDOCRINOLOGY, v.384, no.1-2, pp.175 - 184
Indexed
SCIE
SCOPUS
Journal Title
MOLECULAR AND CELLULAR ENDOCRINOLOGY
Volume
384
Number
1-2
Start Page
175
End Page
184
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/98984
DOI
10.1016/j.mce.2014.01.023
ISSN
0303-7207
Abstract
During early pregnancy, the developing conceptus is dependent upon a wide range of growth factors and nutrients that are secreted by or transported by uterine epithelia into the uterus at the maternal conceptus interface for successful implantation and placentation. Among these factors, insulin-like growth factor-I (IGF-I) is known to play an important role in development of the early embryo and uterine endometrium. However, few studies have been conducted with pigs to determine IGF-I-induced functional effects on penimplantation embryos such as activation of cell signaling cascades responsible for growth, proliferation and differentiation of cells of the conceptus. Therefore, the aim of this study was to analyze mRNA expression of endometrial IGF-I and its receptor, to examine the functional role of IGF-I on primary porcine trophectoderm (pTr) cells and to assess potential signaling pathways responsible for biological activities of IGF-1. In the present study, expression of endometrial type I IGF receptor (IGF-IR) mRNA increased significantly from Day 10 to Day 12 of pregnancy and the increase was greater for pregnant than cyclic gilts. Both IGF-I and IGF-IR mRNAs were abundant in endometrial luminal-, glandular epithelia, and stratum compacturn stroma on Day 12 of pregnancy. In addition, IGF-I significantly induced phosphorylation of AKT1, ERK1/2 and RPS6 in a time- and concentration-dependent manner in pTr cells. Immunofluorescence microscopy revealed that IGF-I treated pTr cells exhibited increased abundance of phosphorylated (p)-AKT1 and p-ERK1/2 MAPK proteins in the nucleus and cytoplasm, and p-RPS6 proteins in the cytosol as compared to non-treated pTr cells. In the presence of the ERK1/2 MAPK inhibitor (U0126), IGF-I-induced AKT1 phosphorylation was not affected, whereas the PI3K inhibitor (LY294002) decreased IGF-I-induced phosphoiylation of ERK1/2 and AKT1 proteins, and both the PI3K-AKT1 and ERK1/2 MAPK pathways were blocked by LY294002. Furthermore, IGF-I significantly stimulated both proliferation and migration of pTr cells, but these effects were blocked by P38 inhibitor (SB203580), U0126, MTOR inhibitor (rapamycin) and LY294002. Taken together, these results indicate that IGF-I coordinately regulates multiple cell signaling pathways including PI3K-AKT1-RPS6 and ERK1/2 MAPK signaling pathways that are critical to proliferation, migration and survival of trophectoderm cells during early pregnancy in pigs. (C) 2014 Elsevier Ireland Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biotechnology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Song, Gwon hwa photo

Song, Gwon hwa
융합생명공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE