Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Covalent Attachment of Biomacromolecules to Plasma-Patterned and Functionalized Carbon Nanotube-Based Devices for Electrochemical Biosensing

Authors
Kim, Joon HyubJin, Joon-HyungLee, Jun-YongPark, Eun JinMin, Nam Ki
Issue Date
10월-2012
Publisher
AMER CHEMICAL SOC
Citation
BIOCONJUGATE CHEMISTRY, v.23, no.10, pp.2078 - 2086
Indexed
SCIE
SCOPUS
Journal Title
BIOCONJUGATE CHEMISTRY
Volume
23
Number
10
Start Page
2078
End Page
2086
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/107306
DOI
10.1021/bc300275z
ISSN
1043-1802
Abstract
The interface between biomacromolecules and carbon nanotubes (CNTs) is of critical importance in developing effective techniques that provide CNTs with both biomolecular recognition and signal transduction through immobilization. However, the chemical inertness of CNT surfaces poses an obstacle to wider implementation of CNTs in bioanalytical applications. In this paper, we present a review of our recent research activities related to the covalent attachment of biomacromolecules to plasma-patterned and functionalized carbon nanotube films and their application to the fabrication of electrochemical biosensing devices. The SWCNT films were spray-deposited onto a miniaturized three-electrode system on a glass substrate and activated using highly purified atomic oxygen generated in radiofrequency plasma; this introduced oxygen-containing functional groups into the SWCNT surface without fatal loss of the original physicochemical properties of the CNTs. The carboxylated SWCNT electrodes were then selectively modified via amidation or esterification for covalent immobilization of the biomacromolecules. The plasma-treated SWCNT-based sensing electrode had an approximately six times larger effective area than the untreated SWCNT-based electrode, which significantly amplified the amperometric electrochemical signal. Finally, the efficacy of plasma-functionalized SWCNT (pf-SWCNT) as a biointerface was examined by immobilizing glucose oxidase, Legionella pneumophila (L, pneumophila)-specific antibodies, L. pneumophila-originated DNAs, and thrombin-specific aptamers on the pf-SWCNT-based three-electrode devices. The pf-SWCNT films were found to support direct covalent immobilization of the above-listed biomacromolecules on the films and to thereby overcome the many drawbacks typically associated with simple physisorption. Thus, pf-SWCNT sensing electrodes on which biomacromolecules were covalently immobilized were found to be chemically stable and have a long lifetime.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science and Technology > Department of Electro-Mechanical Systems Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE