Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Accurate Measurement of Electron Beam Induced Displacement Cross Sections for Single-Layer Graphene

Authors
Meyer, Jannik C.Eder, FranzKurasch, SimonSkakalova, VieraKotakoski, JaniPark, Hye JinRoth, SiegmarChuvilin, AndreyEyhusen, SoerenBenner, GerdKrasheninnikov, Arkady V.Kaiser, Ute
Issue Date
7-5월-2012
Publisher
AMER PHYSICAL SOC
Citation
PHYSICAL REVIEW LETTERS, v.108, no.19
Indexed
SCIE
SCOPUS
Journal Title
PHYSICAL REVIEW LETTERS
Volume
108
Number
19
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/108444
DOI
10.1103/PhysRevLett.108.196102
ISSN
0031-9007
Abstract
We present an accurate measurement and a quantitative analysis of electron-beam-induced displacements of carbon atoms in single-layer graphene. We directly measure the atomic displacement ("knock-on'') cross section by counting the lost atoms as a function of the electron-beam energy and applied dose. Further, we separate knock-on damage (originating from the collision of the beam electrons with the nucleus of the target atom) from other radiation damage mechanisms (e.g., ionization damage or chemical etching) by the comparison of ordinary (C-12) and heavy (C-13) graphene. Our analysis shows that a static lattice approximation is not sufficient to describe knock-on damage in this material, while a very good agreement between calculated and experimental cross sections is obtained if lattice vibrations are taken into account.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE