Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Effect of acetic acid on wet patterning of copper/molybdenum thin films in phosphoric acid solution

Authors
Seo, Bo. -HyunLee, Sang-HyukPark, In-SunSeo, Jong HyunChoe, HeeHwanJeon, Jae-HongHong, MunpyoLee, Yong UkWinkler, Joerg
Issue Date
1-8월-2011
Publisher
ELSEVIER SCIENCE SA
Keywords
Copper; Molybdenum; Acetic acid; Galvanic reaction; Passivation film; Wet etch
Citation
THIN SOLID FILMS, v.519, no.20, pp.6806 - 6809
Indexed
SCIE
SCOPUS
Journal Title
THIN SOLID FILMS
Volume
519
Number
20
Start Page
6806
End Page
6809
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/111819
DOI
10.1016/j.tsf.2011.04.061
ISSN
0040-6090
Abstract
Copper metallization is a key issue for high performance thin film transistor (TFT) technology. A phosphoric acid based copper etchant is a potentially attractive alternative to the conventional hydrogen peroxide based etchant due to its longer-life expectancy time and higher stability in use. In this paper, it is shown that amount of the acetic acid in the phosphoric based copper etchant plays an important role in controlling the galvanic reaction between the copper and the molybdenum. As the concentration of acetic acid in the phosphoric mixture solution increased from 0 M to 0.4 M. the measured galvanic current density dropped from 32 mA/cm(2) to 26 rnA/cm(2), indicating that the acetic acid induces the lower galvanic reaction between the copper and the molybdenum in the solution. From the XPS analysis, with the addition of the acetic acid, the thickness of the protective MoO2 passive film covering the molybdenum surface grew and the dissolution rate of the molybdenum thin film decreased. However, the dissolution rate of the copper thin film increased as the concentration of acetic acid in the mixture solution increased. (C) 2011 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Applied Physics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hong, Mun Pyo photo

Hong, Mun Pyo
응용물리학과
Read more

Altmetrics

Total Views & Downloads

BROWSE