Synthesis of Cu-Doped TiO2 Nanorods with Various Aspect Ratios and Dopant Concentrations
- Authors
- You, Minkyu; Kim, Tae Geun; Sung, Yun-Mo
- Issue Date
- Feb-2010
- Publisher
- AMER CHEMICAL SOC
- Citation
- CRYSTAL GROWTH & DESIGN, v.10, no.2, pp.983 - 987
- Indexed
- SCIE
SCOPUS
- Journal Title
- CRYSTAL GROWTH & DESIGN
- Volume
- 10
- Number
- 2
- Start Page
- 983
- End Page
- 987
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/117037
- DOI
- 10.1021/cg9012944
- ISSN
- 1528-7483
- Abstract
- Colloidal TiO2 nanorods were synthesized with different aspect ratios and successfully doped with copper via a controlled hydrolysis method. Inductively coupled plasma (ICP) atomic emission spectroscopy analyses showed that the as-prepared TiO2 nanorods contained similar to 1.7-3.2 at% Cu. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) analyses revealed that the doped nanorods are in a highly crystalline anatase structure and their crystal growth orientation is preferably [001]. The real doping of Ti lattices with Cu ions was evidenced by the analyses of surface compositions and chemical states of the nanorods using X-ray photoelectron spectroscopy (XPS). Through magnetic investigation using vibration sample magnetometry (VSM), it was verified that the Ti1-xCuxO2 nanorods maintain apparent ferromagnetic ordering at room temperature (300 K). The origin of the ferromagnetic property was explained based on the concentration of oxygen vacancies increased by Cu doping, which was also identified by the XPS analyses. The saturation magnetization showed strong dependency on the aspect ratio of nanorods as well as the Cu content in TiO2 nanorods.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > School of Electrical Engineering > 1. Journal Articles
- College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.