The role of disulfide bond isomerase A (DsbA) of Escherichia coli O157 : H7 in biofilm formation and virulence
- Authors
- Lee, Yunho; Kim, Younghoon; Yeom, Sujin; Kim, Saehun; Park, Sungsu; Jeon, Che Ok; Park, Woojun
- Issue Date
- 1월-2008
- Publisher
- BLACKWELL PUBLISHING
- Keywords
- biofilm; disulfide bond; virulence; Caenorhabditis elegans
- Citation
- FEMS MICROBIOLOGY LETTERS, v.278, no.2, pp.213 - 222
- Indexed
- SCIE
SCOPUS
- Journal Title
- FEMS MICROBIOLOGY LETTERS
- Volume
- 278
- Number
- 2
- Start Page
- 213
- End Page
- 222
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/124504
- DOI
- 10.1111/j.1574-6968.2007.00993.x
- ISSN
- 0378-1097
- Abstract
- The role of periplasmic disulfide oxidoreductase DsbA in Shiga toxin-producing Escherichia coli O157:H7 (STEC) was investigated. Deletion of dsbA (Delta dsbA) significantly decreased cell motility and alkaline phosphatase activity in STEC. STEC Delta dsbA also showed greater sensitivity to menadione and under low pH conditions. Significant reductions in surface attachment to both biotic (HT-29 epithelial cells) and abiotic (polystyrene and polyvinyl chloride) surfaces were observed in STEC Delta dsbA. In addition, no biofilm formation was detected in STEC Delta dsbA compared to wild-type cells in glass capillary tubes under continuous flow-culture system conditions. In the nematode model Caenorhabditis elegans-killing assay, the deletion of dsbA in STEC resulted in attenuated virulence compared to wild-type cells. STEC Delta dsbA was also found to have a reduced ability to colonize the nematode gut. These results suggest that DsbA plays important roles in biofilm formation and virulence in STEC cells.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - Graduate School > Department of Biotechnology > 1. Journal Articles
- College of Life Sciences and Biotechnology > Division of Environmental Science and Ecological Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.