Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Surface-modified ultra-thin indium tin oxide electrodes for efficient perovskite light-emitting diodes

Authors
Son, Kyung RockKim, Young-HoonKim, Dong-HyeokRen, WanqiMurugadoss, VigneshKim, Tae Geun
Issue Date
1-2월-2022
Publisher
ELSEVIER
Keywords
Perovskite light-emitting diodes; Exciton quenching; Electric-field-induced metal doping treatment; Work function; Hole injection
Citation
APPLIED SURFACE SCIENCE, v.575
Indexed
SCIE
SCOPUS
Journal Title
APPLIED SURFACE SCIENCE
Volume
575
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/136500
DOI
10.1016/j.apsusc.2021.151783
ISSN
0169-4332
Abstract
Perovskite light-emitting diodes (PeLEDs) are promising lighting sources owing to their unique optical and electrical properties, such as high color purity and charge carrier mobility. Various material strategies have been reported to increase the radiative recombination rate and alleviate the non-radiative recombination rate of PeLEDs. However, PeLEDs are prone to low device efficiencies owing to the metal-induced exciton quenching caused by the diffusion of metal species from the indium tin oxide (ITO) electrodes into the emissive layer. Herein, we demonstrate that surface modification of ITO by means of electric-field-induced Ni doping treatment prevents the diffusion of metal species and helps tune the work function. The effects of Ni doping on ITO (Ni-ITO) are clarified by conducting X-ray photoelectron spectroscopy, time of flight-secondary ion mass spectrometry, and energy level investigations. A PeLED fabricated using Ni-ITO as the anode exhibited a maximum current efficiency of 91.11 cdA(-1) and external quantum efficiency of 20.48%, which are 13.5% and 13.9% higher than those of the PeLED fabricated using a commercially available ITO film (with a thickness of 180 nm), respectively. The results of this study can be used as guidelines to increase the quantum efficiencies of ITO-based organic/ inorganic emitter devices and PeLEDs.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Tae geun photo

Kim, Tae geun
공과대학 (전기전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE