Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Functional Encapsulating Structure for Wireless and Immediate Monitoring of the Fluid Penetration

Authors
Lim, DaseulHong, InsicPark, Sang UkChae, Jeong WooLee, SeunggonBaac, Hyoung WonShin, ChanghwanLee, JungheonRoh, YeonwookIm, ChaewanPark, YoonseokLee, GeumbeeKim, UikyumKoh, Je-SungKang, DaeshikHan, SeungyongWon, Sang Min
Issue Date
Aug-2022
Publisher
WILEY-V C H VERLAG GMBH
Keywords
bio-fluid transmission rate measurement; flexible bio-integrated electronic systems; magnesium sensors; organic thin film encapsulation; pinhole detection; surface scattering effect
Citation
ADVANCED FUNCTIONAL MATERIALS, v.32, no.31
Indexed
SCIE
SCOPUS
Journal Title
ADVANCED FUNCTIONAL MATERIALS
Volume
32
Number
31
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/140919
DOI
10.1002/adfm.202201854
ISSN
1616-301X
Abstract
With the fast-paced development of biomedical electronics, monitoring physiological processes have become ubiquitous throughout the field of implantable devices. Nevertheless, inherent challenges remain extant when long-term applications are concerned. For the stable and reliable function of these devices, hermetic and biocompatible encapsulation is of paramount importance; however, extrinsic defects and intrinsic swelling properties of the encapsulating layer present the key limitation to ideal barrier performance. Thus, the ability to monitor biofluid penetration and predict the device's functional lifespan is necessary for safe and stable operation within the body. This paper presents the functional encapsulation structure that quantitatively measures the diffusion of fluids into the encapsulation layer. The hydrolysis of Magnesium (Mg) electrodes underneath the encapsulating material shows the capability to wirelessly monitor the water penetration rate and the presence of defects, such as pinholes and cracks, in the encapsulating material. The experiments conducted throughout this paper analyze the Mg thickness and geometry of the antenna to optimize the device's susceptivity to water penetration when submerged in aqueous environments. The facile fabrication process and the compatibility with prevailing implantable electronics further substantiate the device's usability in diverse applications where chronic implants are necessary for monitoring disease or administering required treatments.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Shin, Changhwan photo

Shin, Changhwan
공과대학 (전기전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE