Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Shear-Thinning Biomaterial-Mediated Immune Checkpoint Blockade

Authors
Wu, QingzhiQu, MoyuanKim, Han-JunZhou, XingwuJiang, XingChen, YiZhu, JixiangRen, LiWolter, TylerKang, HeeminXu, ChunGu, ZhenSun, WujinKhademhosseini, Ali
Issue Date
10-8월-2022
Publisher
AMER CHEMICAL SOC
Keywords
cancer immunotherapy; drug delivery; immune checkpoint blockade; shear-thinning biomaterials; sustained release
Citation
ACS APPLIED MATERIALS & INTERFACES, v.14, no.31, pp.35309 - 35318
Indexed
SCIE
SCOPUS
Journal Title
ACS APPLIED MATERIALS & INTERFACES
Volume
14
Number
31
Start Page
35309
End Page
35318
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/143785
DOI
10.1021/acsami.2c06137
ISSN
1944-8244
Abstract
Systemic administration of immune checkpoint blockade agents can activate the anticancer activity of immune cells; however, the response varies from patient to patient and presents potential off-target toxicities. Local administration of immune checkpoint inhibitors (ICIs) can maximize therapeutic efficacies while reducing side effects. This study demonstrates a minimally invasive strategy to locally deliver anti-programmed cell death protein 1 (anti-PD 1) with shear-thinning biomaterials (STBs). ICI can be injected into tumors when loaded in STBs (STB-ICI) composed of gelatin and silicate nanoplatelets (Laponite). The release of ICI from STB was mainly affected by the Laponite percentage in STBs and pH of the local microenvironment. Low Laponite content and acidic pH can induce ICI release. In a murine melanoma model, the injection of STB-ICI significantly reduced tumor growth and increased CD8(+) T cell level in peripheral blood. STB-ICI also induced increased levels of tumor infiltrating CD4(+) helper T cells, CD8(+) cytotoxic T cells, and tumor death. The STB-based minimally invasive strategy provides a simple and efficient approach to deliver ICIs locally.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Hee min photo

Kang, Hee min
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE