Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Resveratrol-loaded gold nanoparticles enhance caspase-mediated apoptosis in PANC-1 pancreatic cells via mitochondrial intrinsic apoptotic pathwayopen access

Authors
Lee, Dong GunLee, MindongGo, Eun ByeolChung, Namhyun
Issue Date
12월-2022
Publisher
BMC
Keywords
Anti-tumor effect; Cell cycle; Gold nanoparticles; Intrinsic apoptosis; Nano-medicine; Pancreatic cancer; Resveratrol; S-phase arrest
Citation
CANCER NANOTECHNOLOGY, v.13, no.1
Indexed
SCIE
SCOPUS
Journal Title
CANCER NANOTECHNOLOGY
Volume
13
Number
1
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/146487
DOI
10.1186/s12645-022-00143-w
ISSN
1868-6958
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) remains one of the most fatal malignancies. Several chemotherapies employing fluorouracil (5-FU) and gemcitabine were attempted, but the survival rate was extremely low. Resveratrol (RVT), known as a polyphenol compound and phytoalexin, was demonstrated to induce intrinsic apoptosis in cancer cells. However, its low delivery performance and efficiency at tumor sites remain an obstacle to exploit RVT as a drug. To address these problems, we bio-conjugated resveratrol with gold nanoparticles (GNPs) via polyvinylpyrrolidone as a cross-linker (RVT@PVP-GNPs) and investigated whether the fabrications could enhance the delivery performance and anti-tumor efficacy of RVT. Results The fabrication of gold nanoparticles (GNPs) and bio-conjugated with resveratrol (RVT@PVP-GNPs) was conducted firstly. TEM image, spectrophotometry and zeta-potential revealed that the GNPs and RVT@PVP-GNPs having a size of approximately 40 nm were successfully synthesized and exhibited moderate stability. GNPs alone represented no damage in PANC-1 cells and moreover diminished the cytotoxicity of RVT in Raw264.7 murine macrophage cells, demonstrating the superiority of gold nanoparticles as a drug carrier. Evaluation using dialysis showed a burst release rate of RVT within 96 h at pH 5.0, demonstrating the possibility of enhanced efficiency of RVT delivery through blood vessels to the tumor. The RVT@PVP-GNPs induced increased rates of S-phase cell cycle arrest and apoptosis compared with free RVT. Notably, RVT@PVP-GNPs diminished the proportion of necrotic cells, whereas free RVT increased it. We also demonstrated that the RVT@PVP-GNPs may induce an apoptosis via intrinsic mitochondria with higher degree compared with free RVT, indicating the possibility of enhanced anti-tumor agents. In animal studies, RVT@PVP-GNPs conjugated with AS1411 aptamer induced efficient tumor volume suppression without accumulation in or damage to the kidneys in vivo. Conclusions The results demonstrate that RVT@PVP-GNPs enhance the anti-tumor efficacy of free RVT by activating the intrinsic apoptotic pathway and could be considered as potential anti-tumor drug candidates against pancreatic cancer cells.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biotechnology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Chung, Nam hyun photo

Chung, Nam hyun
융합생명공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE