Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Evaluation of Deformation and Failure Behaviors of Nuclear Piping Components Under Beyond Design Basis Seismic Loads Using a Simulated Specimen

Authors
Kim, Jin WeonSong, Ik HyunKweon, Heong DoKim, Jong SungKim, Yun Jae
Issue Date
1-10월-2020
Publisher
ASME
Keywords
deformation and failure behaviors; displacement-controlled cyclic loads; excessive seismic loads; simulated specimen; ultimate-strength tests; nuclear piping components
Citation
JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, v.142, no.5
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME
Volume
142
Number
5
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/52512
DOI
10.1115/1.4047212
ISSN
0094-9930
Abstract
This study designed a specimen that simulates the deformation and failure behaviors of the piping components in nuclear power plants (NPPs) under excessive seismic loads beyond the design basis, and conducted ultimate-strength tests using this specimen at room temperature (RT) and 316 degrees C. SA312 TP316 stainless steel (SS) and SA508 Gr.3 Cl.1 low-alloy steel (LAS) were used in the experiments. Displacement-controlled cyclic loads with constant and random amplitudes of load-line displacement (LLD) were applied as input loads. A set of input cyclic loads consisted of 20 cycles, and the LLD amplitudes of the cyclic load were determined to induce the maximum membrane plus bending stress intensity of 6-42S(m) on the specimen, where S-m is the allowable design stress intensity. Multiple sets of input cyclic loads, with increasing amplitude of LLD, were applied to the specimen until cracking initiated. The results demonstrate that the simulated specimen adequately showed the ratcheting deformation and fatigue-induced cracking of piping components under displacement-controlled excessive seismic loads. In addition, samples of both materials failed under displacement-controlled cyclic load levels that were several times higher than those of the design basis earthquake (DBE). The SA316 TP316 SS had greater resistance to failure under large-amplitude cyclic loads than did SA508 Gr.3 Cl.1LAS. For both materials, resistance to failure was lower at 316 degrees C than at RT. This study confirmed that the evaluation procedure of the ASME design code predicted the fatigue failure of specimens very conservatively under large-amplitude cyclic loads simulating displacement-controlled excessive seismic loads.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Yun Jae photo

Kim, Yun Jae
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE