Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

The role of meteorological and hydrological uncertainties in the performance of optimal water allocation approaches

Authors
Anvari, S.Kim, J. H.Moghaddasi, M.
Issue Date
4월-2019
Publisher
WILEY
Keywords
optimization; water requirement; yield function; DP; SDP; SSDP; LP; NLP; Zayandeh-Rud
Citation
IRRIGATION AND DRAINAGE, v.68, no.2, pp.342 - 353
Indexed
SCIE
SCOPUS
Journal Title
IRRIGATION AND DRAINAGE
Volume
68
Number
2
Start Page
342
End Page
353
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/66524
DOI
10.1002/ird.2315
ISSN
1531-0353
Abstract
Efficient reservoir operation and irrigation scheduling are important for the mitigation of water shortages in Iran. For more accuracy, the hydrological and meteorological uncertainties associated with reservoirs and farm levels should be considered. The major contribution of the current paper is to evaluate the uncertainties of evapotranspiration (ET) and inflow, and the issue of constant/variable agricultural demand (CAD/VAD) for optimal irrigation scheduling and reservoir operation. Some optimization approaches were employed and compared during a drought episode in the Zayandeh-Rud agricultural system. Approaches include: (i) DP-CAD: dynamic programming (DP), considering CAD and no inflow uncertainty; (ii) SSDP-CAD: sampling stochastic DP (SSDP) with CAD and inflow uncertainty; (iii) LP-NLP-VAD: implementing linear (LP) and non-linear programming (NLP) modelling for crop types, growing stages, and irrigation systems under deterministic conditions; (iv) SDP-NLP-VAD: similar to the third approach, but considers ET uncertainties using a stochastic DP (SDP) rather than an LP model, and uses stochastic crop yield functions in the NLP formulation. DP-CAD and SDP-NLP-VAD were the simplest and most complicated modelling processes, respectively. SDP-NLP-VAD was the most time-consuming to reach a steady state and a global optimal solution. The LP-NLP-VAD and SDP-NLP-VAD approaches, which account for variability in crop water requirements, conservatively consider water shortages and reservoir release. (c) 2019 John Wiley & Sons, Ltd.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Civil, Environmental and Architectural Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE