Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Intercalated complexes of 1T '-MoS2 nanosheets with alkylated phenylenediamines as excellent catalysts for electrochemical hydrogen evolution

Authors
Kwak, In HyeKwon, Ik SeonAbbas, Hafiz GhulamSeo, JaeminJung, GabinLee, YeronKim, DoyeonAhn, Jae-PyoungPark, JeungheeKang, Hong Seok
Issue Date
7-Feb-2019
Publisher
ROYAL SOC CHEMISTRY
Citation
JOURNAL OF MATERIALS CHEMISTRY A, v.7, no.5, pp.2334 - 2343
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF MATERIALS CHEMISTRY A
Volume
7
Number
5
Start Page
2334
End Page
2343
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/67652
DOI
10.1039/c8ta11085a
ISSN
2050-7488
Abstract
Two-dimensional layered MoS2 has recently been considered as an excellent catalyst for the water-splitting hydrogen evolution reaction (HER). Herein, we synthesize 1T' phase MoS2 that was intercalated with a series of alkylated p-phenylenediamines (PDs). The substituted N atoms produced S vacancies, leading to a composition of MoS2-2xNx (x = 0.1). The more abundant methyl groups induce a larger charge transfer, resulting in excellent HER performance: for tetramethyl PD, the overpotential is 0.15 V at 10 mA cm(-2) with a Tafel slope of 35 mV dec(-1). The catalytic activity of the complexes depends on the concentration of the intercalated molecules, showing an optimum at a concentration of 8 mol%. First-principles calculations showed that the intercalated complexes (1T' phase) having N atom-S vacancy (N-VS) pairs are stabilized by a large charge transfer from the PD molecules that is enhanced by the methyl groups (i.e., 0.40e-0.84e per molecule at 6.25 mol% intercalation). The charge transfer increases the density of states at and just above the Fermi level, thereby increasing the electron concentration at low cathodic bias. The active sites for the Volmer reaction are found to be N atoms in the proximal N-VS pairs. The activation barrier for the Heyrovsky reaction becomes higher at higher concentrations of the intercalants, suggesting that the experimental HER performance is also kinetically controlled.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Advanced Materials Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Jeung Hee photo

Park, Jeung Hee
Department of Advanced Materials Chemistry
Read more

Altmetrics

Total Views & Downloads

BROWSE