Schottky barrier height modulation of metal-interlayer-semiconductor structure depending on contact surface orientation for multi-gate transistors
- Authors
- Kim, Gwang-Sik; Lee, Tae In; Cho, Byung Jin; Yu, Hyun-Yong
- Issue Date
- 7-1월-2019
- Publisher
- AMER INST PHYSICS
- Citation
- APPLIED PHYSICS LETTERS, v.114, no.1
- Indexed
- SCIE
SCOPUS
- Journal Title
- APPLIED PHYSICS LETTERS
- Volume
- 114
- Number
- 1
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/68319
- DOI
- 10.1063/1.5065537
- ISSN
- 0003-6951
- Abstract
- A metal-interlayer-semiconductor (MIS) structure that is realized by inserting an ultrathin interlayer between a contact metal and a semiconductor has been investigated recently as a low-resistance non-alloyed contact structure. However, a comprehensive and systematical investigation of Schottky barrier height (SRH) modulation through the insertion of an interlayer depending on the contact surface orientation has not been conducted despite its importance for its use in multi-gate transistors. Therefore, in this work, the SBH modulation of the MIS contact structure for different contact surface orientations is systematically investigated, and a comprehensive analysis platform of the MIS contact structure is suggested. Two factors, (1) alleviation of Fermi-level pinning due to metal-induced gap states and interface states and (2) formation of the interface dipole, contribute to the SBH modulation in the MIS contact structure. Their contributions depending on the contact surface orientation are evaluated through a comparison of the contact structures on (100)- and (110)-oriented germanium (Ge). These factors and how they should be considered for a certain contact surface in Ge-channel multi-gate transistors are investigated. The investigation and the proposed analysis platform will contribute to the design of high-performance non-alloyed contact schemes for next-generation multi-gate transistors. Published under license by AIP Publishing.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > School of Electrical Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.