Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Arsenic for high-capacity lithium- and sodium-ion batteries

Authors
Lim, Young RokShojaei, FazelPark, KidongJung, Chan SuPark, JeungheeCho, Won IlKang, Hong Seok
Issue Date
21-4월-2018
Publisher
ROYAL SOC CHEMISTRY
Citation
NANOSCALE, v.10, no.15, pp.7047 - 7057
Indexed
SCIE
SCOPUS
Journal Title
NANOSCALE
Volume
10
Number
15
Start Page
7047
End Page
7057
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/76107
DOI
10.1039/c8nr00276b
ISSN
2040-3364
Abstract
We report arsenic (As) as a promising alternative to graphite anode materials in lithium- and sodium-ion batteries (LIBs and SIBs). The electrochemical properties of the As/carbon nanocomposite for both LIBs and SIBs were investigated using experimental and theoretical approaches. The LIBs showed excellent cycling performance, with a reversible capacity of 1306 mA h g(-1) (after 100 cycles), which is much higher than that of Li3As (1072 mA h g(-1)). In the corresponding SIBs, the measured reversible capacity was 750 mA h g(-1) (after 200 cycles), which is lower than that of Na3As. Extensive first-principles calculations were performed employing a structure prediction method for crystalline LixAs and NaxAs (x = 1-6) phases, as well as ab initio molecular dynamics simulations for their amorphous phases. In good agreement with the experimental LIB data, our calculations successfully predict the discharge capacity versus voltage curves, showing that the capacity of the amorphous phase reaches up to that of Li4As. In contrast, the SIB exhibited difficulty in reaching the predicted capacity (x = 3.5), probably due to significant volume expansion. Comparison of the theoretical discharge curves with the experimental data provides valuable information for the development of high-performance LIBs and SIBs.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Advanced Materials Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Jeung Hee photo

Park, Jeung Hee
신소재화학과
Read more

Altmetrics

Total Views & Downloads

BROWSE