Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Strain Mapping and Raman Spectroscopy of Bent GaP and GaAs Nanowires

Authors
Im, Hyung SoonPark, KidongKim, JundongKim, DoyeonLee, JinhaLee, Jung AhPark, JeungheeAhn, Jae-Pyoung
Issue Date
3월-2018
Publisher
AMER CHEMICAL SOC
Citation
ACS OMEGA, v.3, no.3, pp.3129 - 3135
Indexed
SCIE
SCOPUS
Journal Title
ACS OMEGA
Volume
3
Number
3
Start Page
3129
End Page
3135
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/76833
DOI
10.1021/acsomega.8b00063
ISSN
2470-1343
Abstract
Strain engineering of nanowires (NWs) has been recognized as a powerful strategy for tuning the optical and electronic properties of nanoscale semiconductors. Therefore, the characterization of the strains with nanometer-scale spatial resolution is of great importance for various promising applications. In the present work, we synthesized single-crystalline zinc blende phase GaP and GaAs NWs using the chemical vapor transport method and visualized their bending strains (up to 3%) with high precision using the nanobeam electron diffraction technique. The strain mapping at all crystallographic axes revealed that (i) maximum strain exists along the growth direction ([111]) with the tensile and compressive strains at the outer and inner parts, respectively; (ii) the opposite strains appeared along the perpendicular direction ([(2) over bar 11]); and (iii) the tensile strain was larger than the coexisting compressive strain at all axes. The Raman spectrum collected for individual bent NWs showed the peak broadening and red shift of the transverse optical modes that were well-correlated with the strain maps. These results are consistent with the larger mechanical modulus of GaP than that of GaAs. Our work provides new insight into the bending strain of III-V semiconductors, which is of paramount importance in the performance of flexible or bendable electronics.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Advanced Materials Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Jeung Hee photo

Park, Jeung Hee
신소재화학과
Read more

Altmetrics

Total Views & Downloads

BROWSE