Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Ultrasensitive colorimetric detection of NF-kappa B protein at picomolar levels using target-induced passivation of nanoparticles

Authors
Rasheed, P. AbdulLee, Jae-Seung
Issue Date
2월-2018
Publisher
SPRINGER HEIDELBERG
Keywords
Gold nanoparticle; DNA; Colorimetric detection; Protein
Citation
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, v.410, no.4, pp.1397 - 1403
Indexed
SCIE
SCOPUS
Journal Title
ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume
410
Number
4
Start Page
1397
End Page
1403
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/77419
DOI
10.1007/s00216-017-0783-y
ISSN
1618-2642
Abstract
We developed a highly sensitive and selective sensor based on the nanoprobe conjugates of catalytic nanoparticles and double-stranded DNA (dsDNA) for the colorimetric detection of NF-kappa B protein. The sensing mechanism takes advantage of the catalytic activity of nanoparticle surfaces and the specific binding of NF-kappa B to a dsDNA sequence. In the presence of NF-kappa B, the highly selective interactions between dsDNA and NF-kappa B lead to the passivation of the catalytic nanoparticle surfaces, impeding the sodium borohydride-mediated reduction rate of 4-nitrophenol. The correlation between the NF-kappa B concentration and the visualized reduction rate of 4-nitrophenol from yellow to colorless clearly demonstrates the highly quantitative nature of the sensor. Importantly, this sensor can conclusively detect concentrations as low as 6.39 pM of NF-kappa B, which to best of our knowledge is the lowest limit of detection for a colorimetric NF-kappa B detection system. The excellent sensitivity of this sensor relies on the high binding constant of NF-kappa B to dsDNA and the catalytic activity of nanoparticle surfaces for the signal amplification. This sensor allows visual detection without the need for any spectrometric instrumentation. We also determined the various parameters such as the pH, temperature, incubation time, and salt concentration for optimal NF-kappa B-dsDNA interactions. Finally, we demonstrated the performance of the sensor with simulated sample analysis.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Jae Seung photo

Lee, Jae Seung
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE