Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Fermented green tea extract exhibits hypolipidaemic effects through the inhibition of pancreatic lipase and promotion of energy expenditure

Authors
Seo, Dae-BangJeong, Hyun WooKim, Yeon-JiKim, SukyungKim, JeongkeeLee, Ji HaeJoo, KyungmiChoi, Jin KyuShin, Song SeokLee, Sung-Joon
Issue Date
1월-2017
Publisher
CAMBRIDGE UNIV PRESS
Keywords
Fermented green tea; Pancreatic lipase; Serotonin; Hyperlipidaemia; Energy expenditure; Gut microbiota
Citation
BRITISH JOURNAL OF NUTRITION, v.117, no.2, pp.177 - 186
Indexed
SCIE
SCOPUS
Journal Title
BRITISH JOURNAL OF NUTRITION
Volume
117
Number
2
Start Page
177
End Page
186
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/85029
DOI
10.1017/S0007114516004621
ISSN
0007-1145
Abstract
Hyperlipidaemia is a major cause of atherosclerosis and related CVD and can be prevented with natural substances. Previously, we reported that a novel Bacillus-fermented green tea (FGT) exerts anti-obesity and hypolipidaemic effects. This study further investigated the hypotriglyceridaemic and anti-obesogenic effects of FGT and its underlying mechanisms. FGT effectively inhibited pancreatic lipase activity in vitro (IC50, 048 mg/ml) and ameliorated postprandial lipaemia in rats (26 % reduction with 500 mg/kg FGT). In hypertriglyceridaemic hamsters, FGT administration significantly reduced plasma TAG levels. In mice, FGT administration (500 mg/kg) for 2 weeks augmented energy expenditure by 22 % through the induction of plasma serotonin, a neurotransmitter that modulates energy expenditure and mRNA expressions of lipid metabolism genes in peripheral tissues. Analysis of the gut microbiota showed that FGT reduced the proportion of the phylum Firmicutes in hamsters, which could further contribute to its anti-obesity effects. Collectively, these data demonstrate that FGT decreases plasma TAG levels via multiple mechanisms including inhibition of pancreatic lipase, augmentation of energy expenditure, induction of serotonin secretion and alteration of gut microbiota. These results suggest that FGT may be a useful natural agent for preventing hypertriglyceridaemia and obesity.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biotechnology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Sung Joon photo

Lee, Sung Joon
생명과학대학 (식품공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE