Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Sandcastle Worm-Inspired Blood-Resistant Bone Graft Binder Using a Sticky Mussel Protein for Augmented In Vivo Bone Regeneration

Authors
Kim, Hyo JeongChoi, Bong-HyukJun, Sang HoCha, Hyung Joon
Issue Date
21-12월-2016
Publisher
WILEY
Keywords
blood resistance; bone graft binder; bone regeneration; complex coacervation; mussel adhesive protein
Citation
ADVANCED HEALTHCARE MATERIALS, v.5, no.24, pp.3191 - 3202
Indexed
SCIE
SCOPUS
Journal Title
ADVANCED HEALTHCARE MATERIALS
Volume
5
Number
24
Start Page
3191
End Page
3202
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/86511
DOI
10.1002/adhm.201601169
ISSN
2192-2640
Abstract
Xenogenic bone substitutes are commonly used during orthopedic reconstructive procedures to assist bone regeneration. However, huge amounts of blood accompanied with massive bone loss usually increase the difficulty of placing the xenograft into the bony defect. Additionally, the lack of an organic matrix leads to a decrease in the mechanical strength of the bone-grafted site. For effective bone grafting, this study aims at developing a mussel adhesion-employed bone graft binder with great blood-resistance and enhanced mechanical properties. The distinguishing water (or blood) resistance of the binder originates from sandcastle worm-inspired complex coacervation using negatively charged hyaluronic acid (HA) and a positively charged recombinant mussel adhesive protein (rMAP) containing tyrosine residues. The rMAP/HA coacervate stabilizes the agglomerated bone graft in the presence of blood. Moreover, the rMAP/HA composite binder enhances the mechanical and hemostatic properties of the bone graft agglomerate. These outstanding features improve the osteoconductivity of the agglomerate and subsequently promote in vivo bone regeneration. Thus, the blood-resistant coacervated mussel protein glue is a promising binding material for effective bone grafting and can be successfully expanded to general bone tissue engineering.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Medicine > Department of Medical Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE