Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

High-Efficiency CdZnTe Gamma-Ray Detectors

Authors
Bolotnikov, A. E.Ackley, K.Camarda, G. S.Cui, Y.Eger, J. F.De Geronimo, G.Finfrock, C.Fried, J.Hossain, A.Lee, W.Prokesch, M.Petryk, M.Reiber, J. L.Roy, U.Vernon, E.Yang, G.James, R. B.
Issue Date
Dec-2015
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Keywords
CdZnTe; charge-loss correction; crystal defects; virtual Frisch-grid detectors
Citation
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, v.62, no.6, pp.3193 - 3198
Indexed
SCIE
SCOPUS
Journal Title
IEEE TRANSACTIONS ON NUCLEAR SCIENCE
Volume
62
Number
6
Start Page
3193
End Page
3198
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/91708
DOI
10.1109/TNS.2015.2493444
ISSN
0018-9499
Abstract
The longer electron lifetime of today's CdZnTe (CZT) crystals allows for free carriers to travel longer distances in the crystals, which means that, in principle, thicker devices could be fabricated. These thicker CZT devices would offer greater detection efficiency for high-energy gamma-ray detectors. However, up to now, the thicknesses and sizes of actual detectors have still been limited by the nonuniform detector response, and the biggest devices reported in the literature are (20 x 20 x 15)-mm(3) pixelated detectors with a drift distance of 15 mm. Although thicker and bigger single crystals are becoming available today, the high requirements on their crystal quality drastically reduce their acceptance yield and increase their cost. Fortunately, in many cases, the inhomogeneity in response can be corrected by segmenting the active volumes of the detectors and correcting the responses generated from each of the voxels. Such high-granularity position-sensitive detectors open up the opportunity for using thicker and less expensive CZT crystals. The goal of this work is to demonstrate that today's commercial high electron mobility-lifetime CZT material is suitable for a new class of detectors with 20-25-mm drift distances and even larger in the near future, provided that the detectors' response nonuniformities can be corrected on a scale comparable to or larger than the sizes of the electron clouds, which is similar to 100 mu m.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Health Sciences > School of Health and Environmental Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Won ho photo

Lee, Won ho
College of Health Sciences (School of Health and Environmental Science)
Read more

Altmetrics

Total Views & Downloads

BROWSE