Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Controllable and air-stable graphene n-type doping on phosphosilicate glass for intrinsic graphene

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Hyung-Youl-
dc.contributor.authorYoon, Jin-Sang-
dc.contributor.authorJeon, Jeaho-
dc.contributor.authorKim, Jinok-
dc.contributor.authorJo, Seo-Hyeon-
dc.contributor.authorYu, Hyun-Yong-
dc.contributor.authorLee, Sungjoo-
dc.contributor.authorPark, Jin-Hong-
dc.date.accessioned2021-09-04T14:58:05Z-
dc.date.available2021-09-04T14:58:05Z-
dc.date.created2021-06-16-
dc.date.issued2015-07-
dc.identifier.issn1566-1199-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/93220-
dc.description.abstractWe proposed and investigated a controllable air-stable graphene n-doping method on phosphosilicate glass (PSG) to achieve intrinsic graphene. Through Raman, XPS, and AFM analyses, it was confirmed that the initially p-type doped graphene was recovered to intrinsic graphene through n-type doping phenomenon. The n-doping control was accomplished by adjusting the concentration of the out-diffused P2O5 molecules from the PSG layer. In particular, a larger amount of P2O5 molecules and a smoother PSG surface were achieved after the higher temperature annealing, consequently yielding a larger doping impact on the graphene layer. Finally, a very small Dirac point shift (1-3 V) was observed after 96 h of air exposure, compared to the degree of shift by the n-doping effect (17-36 V), demonstrating that this n-doping method is fairly stable in air. (C) 2015 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectCHEMICAL-VAPOR-DEPOSITION-
dc.subjectHEXAGONAL BORON-NITRIDE-
dc.subjectDIRAC POINT-
dc.subjectLARGE-SCALE-
dc.subjectFILMS-
dc.subjectTRANSISTOR-
dc.subjectTRANSPORT-
dc.titleControllable and air-stable graphene n-type doping on phosphosilicate glass for intrinsic graphene-
dc.typeArticle-
dc.contributor.affiliatedAuthorYu, Hyun-Yong-
dc.identifier.doi10.1016/j.orgel.2015.03.039-
dc.identifier.scopusid2-s2.0-84926158638-
dc.identifier.wosid000353334800019-
dc.identifier.bibliographicCitationORGANIC ELECTRONICS, v.22, pp.117 - 121-
dc.relation.isPartOfORGANIC ELECTRONICS-
dc.citation.titleORGANIC ELECTRONICS-
dc.citation.volume22-
dc.citation.startPage117-
dc.citation.endPage121-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusCHEMICAL-VAPOR-DEPOSITION-
dc.subject.keywordPlusHEXAGONAL BORON-NITRIDE-
dc.subject.keywordPlusDIRAC POINT-
dc.subject.keywordPlusLARGE-SCALE-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusTRANSISTOR-
dc.subject.keywordPlusTRANSPORT-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yu, Hyun Yong photo

Yu, Hyun Yong
공과대학 (전기전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE