Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Attenuated SAG expression exacerbates 4-hydroxy-2-nonenal-induced apoptosis and hypertrophy of H9c2 cardiomyocytes

Authors
Park, J. H.Lee, J. H.Park, J. -W.
Issue Date
2015
Publisher
TAYLOR & FRANCIS LTD
Keywords
cardiomyocytes; hypertrophy; apoptosis; 4-hydroxy-2-nonenal; SAG
Citation
FREE RADICAL RESEARCH, v.49, no.8, pp.962 - 972
Indexed
SCIE
SCOPUS
Journal Title
FREE RADICAL RESEARCH
Volume
49
Number
8
Start Page
962
End Page
972
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/96184
DOI
10.3109/10715762.2015.1023796
ISSN
1071-5762
Abstract
Oxidative stress, associated with the accumulation of reactive oxygen species (ROS), results in numerous and detrimental effects on the myocardium such as the induction of apoptotic cell death, hypertrophy, fibrosis, dysfunction, and dilatation. The product of sensitive to apoptosis gene (SAG) is a RING finger protein that has been shown to have a protective effect against apoptosis induced by oxidative stress in various cell types. The major reactive aldehydic product of lipid peroxidation, 4-hydroxy-2-nonenal (HNE), is believed to be largely responsible for cytopathological effects observed during oxidative stress. In the present study, we showed that the transfection of H9c2 clonal myoblastic cells with small interfering RNA (siRNA) specific for SAG markedly attenuated SAG expression and exacerbates HNE-induced apoptosis and hypertrophy. The knockdown of SAG expression resulted in the modulation of cellular redox status, mitochondrial function, and cellular oxidative damage. Taken together, our results showed that the suppression of SAG expression by siRNA enhanced HNE-induced apoptosis and hypertrophy of cultured cardiomyocytes via the disruption of the cellular redox balance. Given the importance of the SAG protein in the regulation of the redox status of cardiomyocytes, we conclude that this protein may be a potential new target in the development of therapeutic agents for the prevention of cardiovascular diseases.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Food and Biotechnology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE